enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Eigenvalue algorithm - Wikipedia

    en.wikipedia.org/wiki/Eigenvalue_algorithm

    Given an n × n square matrix A of real or complex numbers, an eigenvalue λ and its associated generalized eigenvector v are a pair obeying the relation [1] =,where v is a nonzero n × 1 column vector, I is the n × n identity matrix, k is a positive integer, and both λ and v are allowed to be complex even when A is real.l When k = 1, the vector is called simply an eigenvector, and the pair ...

  3. Jacobi eigenvalue algorithm - Wikipedia

    en.wikipedia.org/wiki/Jacobi_eigenvalue_algorithm

    for k := 1 to n−1 do m := k for l := k+1 to n do if e l > e m then m := l endif endfor if k ≠ m then swap e m,e k swap E m,E k endif endfor. 4. The algorithm is written using matrix notation (1 based arrays instead of 0 based). 5. When implementing the algorithm, the part specified using matrix notation must be performed simultaneously. 6.

  4. Spectrum of a matrix - Wikipedia

    en.wikipedia.org/wiki/Spectrum_of_a_matrix

    The eigendecomposition (or spectral decomposition) of a diagonalizable matrix is a decomposition of a diagonalizable matrix into a specific canonical form whereby the matrix is represented in terms of its eigenvalues and eigenvectors. The spectral radius of a square matrix is the largest absolute value of its eigenvalues.

  5. Eigenvalues and eigenvectors - Wikipedia

    en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

    Suppose the eigenvectors of A form a basis, or equivalently A has n linearly independent eigenvectors v 1, v 2, ..., v n with associated eigenvalues λ 1, λ 2, ..., λ n. The eigenvalues need not be distinct. Define a square matrix Q whose columns are the n linearly independent eigenvectors of A,

  6. Rayleigh–Ritz method - Wikipedia

    en.wikipedia.org/wiki/Rayleigh–Ritz_method

    Hence M = [m 1, m 2] and K = [k 1, k 2]. A mode shape is assumed for the system, with two terms, one of which is weighted by a factor B , e.g. Y = [1, 1] + B [1, −1]. Simple harmonic motion theory says that the velocity at the time when deflection is zero, is the angular frequency ω {\displaystyle \omega } times the deflection (y) at time of ...

  7. Lanczos algorithm - Wikipedia

    en.wikipedia.org/wiki/Lanczos_algorithm

    The Lanczos algorithm is most often brought up in the context of finding the eigenvalues and eigenvectors of a matrix, but whereas an ordinary diagonalization of a matrix would make eigenvectors and eigenvalues apparent from inspection, the same is not true for the tridiagonalization performed by the Lanczos algorithm; nontrivial additional steps are needed to compute even a single eigenvalue ...

  8. Graph Fourier transform - Wikipedia

    en.wikipedia.org/wiki/Graph_Fourier_transform

    In mathematics, the graph Fourier transform is a mathematical transform which eigendecomposes the Laplacian matrix of a graph into eigenvalues and eigenvectors. Analogously to the classical Fourier transform , the eigenvalues represent frequencies and eigenvectors form what is known as a graph Fourier basis .

  9. Arnoldi iteration - Wikipedia

    en.wikipedia.org/wiki/Arnoldi_iteration

    In numerical linear algebra, the Arnoldi iteration is an eigenvalue algorithm and an important example of an iterative method.Arnoldi finds an approximation to the eigenvalues and eigenvectors of general (possibly non-Hermitian) matrices by constructing an orthonormal basis of the Krylov subspace, which makes it particularly useful when dealing with large sparse matrices.