Ad
related to: all numbers divisible by 96 and 60 tableThis site is a teacher's paradise! - The Bender Bunch
- Worksheet Generator
Use our worksheet generator to make
your own personalized puzzles.
- Educational Songs
Explore catchy, kid-friendly tunes
to get your kids excited to learn.
- Lesson Plans
Engage your students with our
detailed lesson plans for K-8.
- Interactive Stories
Enchant young learners with
animated, educational stories.
- Worksheet Generator
Search results
Results from the WOW.Com Content Network
The tables below list all of the divisors of the numbers 1 to 1000. A divisor of an integer n is an integer m , for which n / m is again an integer (which is necessarily also a divisor of n ). For example, 3 is a divisor of 21, since 21/7 = 3 (and therefore 7 is also a divisor of 21).
The basic rule for divisibility by 4 is that if the number formed by the last two digits in a number is divisible by 4, the original number is divisible by 4; [2] [3] this is because 100 is divisible by 4 and so adding hundreds, thousands, etc. is simply adding another number that is divisible by 4. If any number ends in a two digit number that ...
A refactorable number or tau number is an integer n that is divisible by the count of its divisors, or to put it algebraically, n is such that (). The first few refactorable numbers are listed in (sequence A033950 in the OEIS ) as
m is a divisor of n (also called m divides n, or n is divisible by m) if all prime factors of m have at least the same multiplicity in n. The divisors of n are all products of some or all prime factors of n (including the empty product 1 of no prime factors). The number of divisors can be computed by increasing all multiplicities by 1 and then ...
The number of divisors of 96 is 12. [6] As no smaller number has more than 12 divisors, 96 is a largely composite number. [7] Skilling's figure, a degenerate uniform polyhedron, has a Euler characteristic = Every integer greater than 96 may be represented as a sum of distinct super-prime numbers.
The prime numbers are precisely the atoms of the division lattice, namely those natural numbers divisible only by themselves and 1. [ 2 ] For any square-free number n , its divisors form a Boolean algebra that is a sublattice of the division lattice.
Highly composite numbers: 1, 2, 4, 6, 12, 24, 36, 48, 60, 120, ... A positive integer with more divisors than any smaller positive integer. A002182: Superior highly composite numbers: 2, 6, 12, 60, 120, 360, 2520, 5040, 55440, 720720, ... A positive integer n for which there is an e > 0 such that d(n) / n e ≥ d(k) / k e for ...
For instance, consider division by the regular number 54 = 2 1 3 3. 54 is a divisor of 60 3, and 60 3 /54 = 4000, so dividing by 54 in sexagesimal can be accomplished by multiplying by 4000 and shifting three places. In sexagesimal 4000 = 1×3600 + 6×60 + 40×1, or (as listed by Joyce) 1:6:40.
Ad
related to: all numbers divisible by 96 and 60 tableThis site is a teacher's paradise! - The Bender Bunch