Search results
Results from the WOW.Com Content Network
For example, if the current data set includes blood pressure measured with greater precision than is common in clinical practice. One specific example of this arose when developing a regression equation based on a clinical trial, in which blood pressure was the average of six measurements, for use in clinical practice, where blood pressure is ...
It has also been called Sen's slope estimator, [1] [2] slope selection, [3] [4] the single median method, [5] the Kendall robust line-fit method, [6] and the Kendall–Theil robust line. [7] It is named after Henri Theil and Pranab K. Sen , who published papers on this method in 1950 and 1968 respectively, [ 8 ] and after Maurice Kendall ...
Linear errors-in-variables models were studied first, probably because linear models were so widely used and they are easier than non-linear ones. Unlike standard least squares regression (OLS), extending errors in variables regression (EiV) from the simple to the multivariable case is not straightforward, unless one treats all variables in the same way i.e. assume equal reliability.
The solution is the weighted average of six increments, where each increment is the product of the size of the interval, , and an estimated slope specified by function f on the right-hand side of the differential equation.
Linear least squares (LLS) is the least squares approximation of linear functions to data. It is a set of formulations for solving statistical problems involved in linear regression, including variants for ordinary (unweighted), weighted, and generalized (correlated) residuals.
(1) The Type I bias equations 1.1 and 1.2 are not affected by the sample size n. (2) Eq(1.4) is a re-arrangement of the second term in Eq(1.3). (3) The Type II bias and the variance and standard deviation all decrease with increasing sample size, and they also decrease, for a given sample size, when x's standard deviation σ becomes small ...
Any non-linear differentiable function, (,), of two variables, and , can be expanded as + +. If we take the variance on both sides and use the formula [11] for the variance of a linear combination of variables (+) = + + (,), then we obtain | | + | | +, where is the standard deviation of the function , is the standard deviation of , is the standard deviation of and = is the ...
Deming regression is equivalent to the maximum likelihood estimation of an errors-in-variables model in which the errors for the two variables are assumed to be independent and normally distributed, and the ratio of their variances, denoted δ, is known. [1] In practice, this ratio might be estimated from related data-sources; however the ...