Search results
Results from the WOW.Com Content Network
Orbital decay is a gradual decrease of the distance between two orbiting bodies at their closest approach (the periapsis) over many orbital periods. These orbiting bodies can be a planet and its satellite , a star and any object orbiting it, or components of any binary system .
Every object in a 2-body ballistic trajectory has a constant specific orbital energy equal to the sum of its specific kinetic and specific potential energy: = = =, where = is the standard gravitational parameter of the massive body with mass , and is the radial distance from its center. As an object in an escape trajectory moves outward, its ...
The specific orbital energy associated with this orbit is −29.6 MJ/kg: the potential energy is −59.2 MJ/kg, and the kinetic energy 29.6 MJ/kg. Compared with the potential energy at the surface, which is −62.6 MJ/kg., the extra potential energy is 3.4 MJ/kg, and the total extra energy is 33.0 MJ/kg.
This energy gained by the object comes from its orbital energy and/or rotational energy, so over time in a two-body system, the initial elliptical orbit decays into a circular orbit (tidal circularization) and the rotational periods of the two bodies adjust towards matching the orbital period (tidal locking). Sustained tidal heating occurs when ...
For a given semi-major axis the specific orbital energy is independent of the eccentricity. Using the virial theorem to find: the time-average of the specific potential energy is equal to −2ε the time-average of r −1 is a −1; the time-average of the specific kinetic energy is equal to ε
Internal conversion is an atomic decay process where an excited nucleus interacts electromagnetically with one of the orbital electrons of an atom. This causes the electron to be emitted (ejected) from the atom.
Each orbital in an atom is characterized by a set of values of three quantum numbers n, ℓ, and m ℓ, which respectively correspond to electron's energy, its orbital angular momentum, and its orbital angular momentum projected along a chosen axis (magnetic quantum number). The orbitals with a well-defined magnetic quantum number are generally ...
At higher altitudes, where air drag is less significant, orbital decay takes longer. Slight atmospheric drag, lunar perturbations, Earth's gravity perturbations, solar wind, and solar radiation pressure can gradually bring debris down to lower altitudes (where it decays), but at very high altitudes this may take centuries. [57]