Search results
Results from the WOW.Com Content Network
A frame is "the unit of transmission in a link layer protocol, and consists of a link layer header followed by a packet." [2] Each frame is separated from the next by an interframe gap. A frame is a series of bits generally composed of frame synchronization bits, the packet payload, and a frame check sequence.
The Layer 4: transport layer PDU is the segment or the datagram. The Layer 3: network layer PDU is the packet. The Layer 2: data link layer PDU is the frame. The Layer 1: physical layer PDU is the bit or, more generally, symbol. Given a context pertaining to a specific OSI layer, PDU is sometimes used as a synonym for its representation at that ...
IP packets are composed of a header and payload. The header consists of fixed and optional fields. The payload appears immediately after the header. An IP packet has no trailer. However, an IP packet is often carried as the payload inside an Ethernet frame, which has its own header and trailer.
The TCP segment is then encapsulated into an Internet Protocol (IP) datagram, and exchanged with peers. [14] The term TCP packet appears in both informal and formal usage, whereas in more precise terminology segment refers to the TCP protocol data unit (PDU), datagram [15] to the IP PDU, and frame to the data link layer PDU:
The internal structure of an Ethernet frame is specified in IEEE 802.3. [2] The table below shows the complete Ethernet packet and the frame inside, as transmitted, for the payload size up to the MTU of 1500 octets. [b] Some implementations of Gigabit Ethernet and other higher-speed variants of Ethernet support larger frames, known as jumbo frames.
Individual frames are then "minor frames" within that superframe. Each frame contains a subframe ID (often a simple counter) which identifies its position within the superframe. A second frame synchronizer establishes superframe synchronization. This allows subcommutation, where some data is sent less frequently than every frame.
In digital communications networks, packet processing refers to the wide variety of algorithms that are applied to a packet of data or information as it moves through the various network elements of a communications network. With the increased performance of network interfaces, there is a corresponding need for faster packet processing.
In telecommunications, packet switching is a method of grouping data into short messages in fixed format, i.e. packets, that are transmitted over a digital network. Packets are made of a header and a payload .