Search results
Results from the WOW.Com Content Network
Simple relaxation oscillator made by feeding back an inverting Schmitt trigger's output voltage through a RC network to its input.. An electronic oscillator is an electronic circuit that produces a periodic, oscillating or alternating current (AC) signal, usually a sine wave, square wave or a triangle wave, [1] [2] [3] powered by a direct current (DC) source.
Electronic oscillation is a repeating cyclical variation in voltage or current in an electrical circuit, resulting in a periodic waveform. [1] The frequency of the oscillation in hertz is the number of times the cycle repeats per second. The recurrence may be in the form of a varying voltage or a varying current.
In spectroscopy, oscillator strength is a dimensionless quantity that expresses the probability of absorption or emission of electromagnetic radiation in transitions between energy levels of an atom or molecule. [1] [2] For example, if an emissive state has a small oscillator strength, nonradiative decay will outpace radiative decay.
A crystal oscillator is an electronic oscillator circuit that uses a piezoelectric crystal as a frequency-selective element. [1] [2] [3] The oscillator frequency is often used to keep track of time, as in quartz wristwatches, to provide a stable clock signal for digital integrated circuits, and to stabilize frequencies for radio transmitters and receivers.
In chemistry, a chemical oscillator is a complex mixture of reacting chemical compounds in which the concentration of one or more components exhibits periodic changes.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us
A molecular vibration is a periodic motion of the atoms of a molecule relative to each other, such that the center of mass of the molecule remains unchanged. The typical vibrational frequencies range from less than 10 13 Hz to approximately 10 14 Hz, corresponding to wavenumbers of approximately 300 to 3000 cm −1 and wavelengths of approximately 30 to 3 μm.
Three wavefunction solutions to the time-dependent Schrödinger equation for an electron in a harmonic oscillator potential. Left: The real part (blue) and imaginary part (red) of the wavefunction. Right: The probability of finding the particle at a certain position.