Search results
Results from the WOW.Com Content Network
If Gaussian elimination applied to a square matrix A produces a row echelon matrix B, let d be the product of the scalars by which the determinant has been multiplied, using the above rules. Then the determinant of A is the quotient by d of the product of the elements of the diagonal of B : det ( A ) = ∏ diag ( B ) d . {\displaystyle \det ...
The reduced row echelon form of a matrix is unique and does not depend on the sequence of elementary row operations used to obtain it. The variant of Gaussian elimination that transforms a matrix to reduced row echelon form is sometimes called Gauss–Jordan elimination. A matrix is in column echelon form if its transpose is in
The use of Gaussian elimination for putting the augmented matrix in reduced row echelon form does not change the set of solutions and the ranks of the involved matrices. The theorem can be read almost directly on the reduced row echelon form as follows. The rank of a matrice is number of nonzero rows in its reduced row echelon form.
In mathematics, an elementary matrix is a square matrix obtained from the application of a single elementary row operation to the identity matrix.The elementary matrices generate the general linear group GL n (F) when F is a field.
Otherwise, the Bareiss algorithm may be viewed as a variant of Gaussian elimination and needs roughly the same number of arithmetic operations. It follows that, for an n × n matrix of maximum (absolute) value 2 L for each entry, the Bareiss algorithm runs in O( n 3 ) elementary operations with an O( n n /2 2 nL ) bound on the absolute value of ...
These decompositions summarize the process of Gaussian elimination in matrix form. Matrix P represents any row interchanges carried out in the process of Gaussian elimination. If Gaussian elimination produces the row echelon form without requiring any row interchanges, then P = I , so an LU decomposition exists.
A pivot position in a matrix, A, is a position in the matrix that corresponds to a row–leading 1 in the reduced row echelon form of A. Since the reduced row echelon form of A is unique, the pivot positions are uniquely determined and do not depend on whether or not row interchanges are performed in the reduction process.
The Gaussian elimination is a similar algorithm; it transforms any matrix to row echelon form. [51] Both methods proceed by multiplying the matrix by suitable elementary matrices , which correspond to permuting rows or columns and adding multiples of one row to another row.