enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Standard deviation - Wikipedia

    en.wikipedia.org/wiki/Standard_deviation

    Cumulative probability of a normal distribution with expected value 0 and standard deviation 1. In statistics, the standard deviation is a measure of the amount of variation of the values of a variable about its mean. [1] A low standard deviation indicates that the values tend to be close to the mean (also called the expected value) of the set ...

  3. Unbiased estimation of standard deviation - Wikipedia

    en.wikipedia.org/wiki/Unbiased_estimation_of...

    Unbiased estimation of standard deviation. In statistics and in particular statistical theory, unbiased estimation of a standard deviation is the calculation from a statistical sample of an estimated value of the standard deviation (a measure of statistical dispersion) of a population of values, in such a way that the expected value of the ...

  4. Deviation (statistics) - Wikipedia

    en.wikipedia.org/wiki/Deviation_(statistics)

    Deviation (statistics) In mathematics and statistics, deviation serves as a measure to quantify the disparity between an observed value of a variable and another designated value, frequently the mean of that variable. Deviations with respect to the sample mean and the population mean (or "true value") are called errors and residuals, respectively.

  5. Ordinary least squares - Wikipedia

    en.wikipedia.org/wiki/Ordinary_least_squares

    t. e. Okun's law in macroeconomics states that in an economy the GDP growth should depend linearly on the changes in the unemployment rate. Here the ordinary least squares method is used to construct the regression line describing this law. In statistics, ordinary least squares (OLS) is a type of linear least squares method for choosing the ...

  6. Chebyshev's inequality - Wikipedia

    en.wikipedia.org/wiki/Chebyshev's_inequality

    Chebyshev's inequality. In probability theory, Chebyshev's inequality (also called the Bienaymé–Chebyshev inequality) provides an upper bound on the probability of deviation of a random variable (with finite variance) from its mean. More specifically, the probability that a random variable deviates from its mean by more than is at most ...

  7. 68–95–99.7 rule - Wikipedia

    en.wikipedia.org/wiki/68–95–99.7_rule

    In statistics, the 68–95–99.7 rule, also known as the empirical rule, and sometimes abbreviated 3sr, is a shorthand used to remember the percentage of values that lie within an interval estimate in a normal distribution: approximately 68%, 95%, and 99.7% of the values lie within one, two, and three standard deviations of the mean, respectively.

  8. Propagation of uncertainty - Wikipedia

    en.wikipedia.org/wiki/Propagation_of_uncertainty

    Any non-linear differentiable function, (,), of two variables, and , can be expanded as + +. If we take the variance on both sides and use the formula [11] for the variance of a linear combination of variables ⁡ (+) = ⁡ + ⁡ + ⁡ (,), then we obtain | | + | | +, where is the standard deviation of the function , is the standard deviation of , is the standard deviation of and = is the ...

  9. Geometric standard deviation - Wikipedia

    en.wikipedia.org/wiki/Geometric_standard_deviation

    The geometric standard deviation is used as a measure of log-normal dispersion analogously to the geometric mean. [3] As the log-transform of a log-normal distribution results in a normal distribution, we see that the geometric standard deviation is the exponentiated value of the standard deviation of the log-transformed values, i.e. = ⁡ (⁡ (⁡)).