Search results
Results from the WOW.Com Content Network
The angle bisector in geometry is the ray, line, or segment which divides a given angle into two equal parts. For example, an angle bisector of a 60-degree angle will divide it into two angles of 30 degrees each.
The Angle Bisector Theorem states that when an angle in a triangle is split into two equal angles, it divides the opposite side into two parts. The ratio of these parts will be the same as the ratio of the sides next to the angle. Created by Sal Khan.
An angle bisector is a line segment, ray, or line that divides an angle into two congruent adjacent angles. Line segment OC bisects angle AOB above. So, ∠AOC = ∠BOC which means ∠AOC and ∠BOC are congruent angles.
An angle bisector divides an angle into two angles of equal measure. Any given point lying on the angle bisector is at an equal distance from the arms or sides of the angle. The angle bisector in a triangle divides the opposite side in a ratio that is equal to the ratio of the other two sides.
Angle bisector in geometry refers to a line that splits an angle into two equal angles. Bisector means the thing that bisects a shape or an object into two equal parts. If we draw a ray that bisects an angle into two equal parts of the same measure, then it is called an angle bisector.
Angle Bisector Theorem. An angle bisector cuts an angle exactly in half. One important property of angle bisectors is that if a point is on the bisector of an angle, then the point is equidistant from the sides of the angle. This is called the Angle Bisector Theorem.
The angle bisector theorem is concerned with the relative lengths of the two segments that a triangle's side is divided into by a line that bisects the opposite angle. It equates their relative lengths to the relative lengths of the other two sides of the triangle.