Search results
Results from the WOW.Com Content Network
The electron configuration is determined by the charge of the nucleus, which is determined by the number of protons, or atomic number. The number of neutrons is the neutron number. Neutrons do not affect the electron configuration. Atoms of a chemical element that differ only in neutron number are called isotopes.
The charge number equals the electric charge (q, in coulombs) divided by the elementary charge: z = q/e. Atomic numbers (Z) are a special case of charge numbers, referring to the charge number of an atomic nucleus, as opposed to the net charge of an atom or ion. The charge numbers for ions (and also subatomic particles) are written in ...
The atomic number or nuclear charge number (symbol Z) of a chemical element is the charge number of its atomic nucleus. For ordinary nuclei composed of protons and neutrons , this is equal to the proton number ( n p ) or the number of protons found in the nucleus of every atom of that element.
The neutron number (symbol N) is the number of neutrons in a nuclide. Atomic number (proton number) plus neutron number equals mass number : Z + N = A . The difference between the neutron number and the atomic number is known as the neutron excess: D = N − Z = A − 2 Z .
Protons define the entire charge of a nucleus, and hence its chemical identity. Neutrons are electrically neutral, but contribute to the mass of a nucleus to nearly the same extent as the protons. Neutrons can explain the phenomenon of isotopes (same atomic number with different atomic mass). The main role of neutrons is to reduce electrostatic ...
The proton carries a positive net charge, and the neutron carries a zero net charge; the proton's mass is only about 0.13% less than the neutron's. Thus, they can be viewed as two states of the same nucleon, and together form an isospin doublet (I = 1 / 2 ). In isospin space, neutrons can be transformed into protons and conversely by SU ...
But since each hydrogen nucleus had charge +1, the nucleus required a smaller number of "internal electrons" each of charge −1 to give the nucleus its correct total charge. The mass of protons is about 1800 times greater than that of electrons, so the mass of the electrons is incidental in this computation.
The mass number (symbol A, from the German word: Atomgewicht, "atomic weight"), [1] also called atomic mass number or nucleon number, is the total number of protons and neutrons (together known as nucleons) in an atomic nucleus. It is approximately equal to the atomic (also known as isotopic) mass of the atom expressed in atomic mass units.