Search results
Results from the WOW.Com Content Network
Diagram of a restricted Boltzmann machine with three visible units and four hidden units (no bias units) A restricted Boltzmann machine (RBM) (also called a restricted Sherrington–Kirkpatrick model with external field or restricted stochastic Ising–Lenz–Little model) is a generative stochastic artificial neural network that can learn a probability distribution over its set of inputs.
Deeplearning4j includes implementations of the restricted Boltzmann machine, deep belief net, deep autoencoder, stacked denoising autoencoder and recursive neural tensor network, word2vec, doc2vec, and GloVe. These algorithms all include distributed parallel versions that integrate with Apache Hadoop and Spark. [5]
Schematic structure of an autoencoder with 3 fully connected hidden layers. The code (z, or h for reference in the text) is the most internal layer. Autoencoders are often trained with a single-layer encoder and a single-layer decoder, but using many-layered (deep) encoders and decoders offers many advantages.
The Boltzmann machine can be thought of as a noisy Hopfield network. It is one of the first neural networks to demonstrate learning of latent variables (hidden units). Boltzmann machine learning was at first slow to simulate, but the contrastive divergence algorithm speeds up training for Boltzmann machines and Products of Experts.
The deep belief network model by Hinton et al. (2006) involves learning the distribution of a high-level representation using successive layers of binary or real-valued latent variables. It uses a restricted Boltzmann machine to model each new layer of higher level features.
This is not a restricted Boltzmann machine. A Boltzmann machine (also called Sherrington–Kirkpatrick model with external field or stochastic Ising model), named after Ludwig Boltzmann is a spin-glass model with an external field, i.e., a Sherrington–Kirkpatrick model, [1] that is a stochastic Ising model.
The name of the algorithm derives from its use of two learning phases, the “wake” phase and the “sleep” phase, which are performed alternately. [1] It can be conceived as a model for learning in the brain, [5] but is also being applied for machine learning. [6]
Extreme learning machines are feedforward neural networks for classification, regression, clustering, sparse approximation, compression and feature learning with a single layer or multiple layers of hidden nodes, where the parameters of hidden nodes (not just the weights connecting inputs to hidden nodes) need to be tuned.