Search results
Results from the WOW.Com Content Network
Signal-to-noise ratio (SNR or S/N) is a measure used in science and engineering that compares the level of a desired signal to the level of background noise. SNR is defined as the ratio of signal power to noise power , often expressed in decibels .
The ratio of (a) total received power, i.e., the signal to (b) the noise-plus-distortion power. This is modeled by the equation above. [2] The ratio of (a) the power of a test signal, i.e. a sine wave, to (b) the residual received power, i.e. noise-plus-distortion power. With this definition, it is possible to have a SINAD level less than one.
This is an example of a case where sensivity is defined as the minimum input signal required to produce a specified output signal having a specified signal-to-noise ratio. [2] This definition has the advantage that the sensitivity is closely related to the detection limit of a sensor if the minimum detectable SNR o is specified ( SNR ).
A minimum detectable signal is a signal at the input of a system whose power allows it to be detected over the background electronic noise of the detector system. It can alternately be defined as a signal that produces a signal-to-noise ratio of a given value m at the output. In practice, m is usually chosen to be greater than unity.
where is the average power of the signal, quantization error, random noise and distortion components. SINADR is usually expressed in dB. SINADR is a standard metric for analog-to-digital converter and digital-to-analog converter. SINADR (in dB) is related to effective number of bits (ENOB) by the following equation:
[5] [6] Acceptable values for wireless transmission quality loss are considered to be about 20 dB to 25 dB. [7] [8] In the absence of noise, the two images I and K are identical, and thus the MSE is zero. In this case the PSNR is infinite (or undefined, see Division by zero). [9]
In telecommunications, the carrier-to-noise ratio, often written CNR or C/N, is the signal-to-noise ratio (SNR) of a modulated signal. The term is used to distinguish the CNR of the radio frequency passband signal from the SNR of an analog base band message signal after demodulation .
In information theory and telecommunication engineering, the signal-to-interference-plus-noise ratio (SINR [1]) (also known as the signal-to-noise-plus-interference ratio (SNIR) [2]) is a quantity used to give theoretical upper bounds on channel capacity (or the rate of information transfer) in wireless communication systems such as networks.