Search results
Results from the WOW.Com Content Network
The figure can serve to illustrate some further properties of the function spaces of wave functions. In this case, the wave functions are square integrable. One can initially take the function space as the space of square integrable functions, usually denoted L 2. The displayed functions are solutions to the Schrödinger equation.
Consequently, the wave function also became a four-component function, governed by the Dirac equation that, in free space, read (+ (= )) =. This has again the form of the Schrödinger equation, with the time derivative of the wave function being given by a Hamiltonian operator acting upon the wave function.
A so-called eigenmode is a solution that oscillates in time with a well-defined constant angular frequency ω, so that the temporal part of the wave function takes the form e −iωt = cos(ωt) − i sin(ωt), and the amplitude is a function f(x) of the spatial variable x, giving a separation of variables for the wave function: (,) = ().
Functions of this form are known as Bloch functions or Bloch states, and serve as a suitable basis for the wave functions or states of electrons in crystalline solids. The description of electrons in terms of Bloch functions, termed Bloch electrons (or less often Bloch Waves ), underlies the concept of electronic band structures .
The following equations have solutions which satisfy the superposition principle, that is, the wave functions are additive. Throughout, the standard conventions of tensor index notation and Feynman slash notation are used, including Greek indices which take the values 1, 2, 3 for the spatial components and 0 for the timelike component of the ...
Some trajectories of a particle in a box according to Newton's laws of classical mechanics (A), and according to the Schrödinger equation of quantum mechanics (B–F). In (B–F), the horizontal axis is position, and the vertical axis is the real part (blue) and imaginary part (red) of the wave function.
The Coulomb wave equation for a single charged particle of mass is the Schrödinger equation with Coulomb potential [1] (+) = (),where = is the product of the charges of the particle and of the field source (in units of the elementary charge, = for the hydrogen atom), is the fine-structure constant, and / is the energy of the particle.
The term is also used, even more specifically, to mean a "monochromatic" or sinusoidal plane wave: a travelling plane wave whose profile () is a sinusoidal function. That is, (,) = (() +) The parameter , which may be a scalar or a vector, is called the amplitude of the wave; the scalar coefficient is its "spatial frequency"; and the scalar is its "phase shift".