enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Anomaly detection - Wikipedia

    en.wikipedia.org/wiki/Anomaly_detection

    The methods must manage real-time data, diverse device types, and scale effectively. Garbe et al. [19] have introduced a multi-stage anomaly detection framework that improves upon traditional methods by incorporating spatial clustering, density-based clustering, and locality-sensitive hashing. This tailored approach is designed to better handle ...

  3. Outlier - Wikipedia

    en.wikipedia.org/wiki/Outlier

    The modified Thompson Tau test is a method used to determine if an outlier exists in a data set. [23] The strength of this method lies in the fact that it takes into account a data set's standard deviation, average and provides a statistically determined rejection zone; thus providing an objective method to determine if a data point is an outlier.

  4. Peirce's criterion - Wikipedia

    en.wikipedia.org/wiki/Peirce's_criterion

    In 2012, C. Dardis released the R package "Peirce" with various methodologies (Peirce's criterion and the Chauvenet method) with comparisons of outlier removals. Dardis and fellow contributor Simon Muller successfully implemented Thomsen's pseudo-code into a function called "findx".

  5. Robust Regression and Outlier Detection - Wikipedia

    en.wikipedia.org/wiki/Robust_Regression_and...

    The book has seven chapters. [1] [4] The first is introductory; it describes simple linear regression (in which there is only one independent variable), discusses the possibility of outliers that corrupt either the dependent or the independent variable, provides examples in which outliers produce misleading results, defines the breakdown point, and briefly introduces several methods for robust ...

  6. Chauvenet's criterion - Wikipedia

    en.wikipedia.org/wiki/Chauvenet's_criterion

    The idea behind Chauvenet's criterion finds a probability band that reasonably contains all n samples of a data set, centred on the mean of a normal distribution.By doing this, any data point from the n samples that lies outside this probability band can be considered an outlier, removed from the data set, and a new mean and standard deviation based on the remaining values and new sample size ...

  7. Dixon's Q test - Wikipedia

    en.wikipedia.org/wiki/Dixon's_Q_test

    However, at 95% confidence, Q = 0.455 < 0.466 = Q table 0.167 is not considered an outlier. McBane [1] notes: Dixon provided related tests intended to search for more than one outlier, but they are much less frequently used than the r 10 or Q version that is intended to eliminate a single outlier.

  8. Local outlier factor - Wikipedia

    en.wikipedia.org/wiki/Local_outlier_factor

    Local outlier detection reconsidered: a generalized view on locality with applications to spatial, video, and network outlier detection [4] discusses the general pattern in various local outlier detection methods (including, e.g., LOF, a simplified version of LOF and LoOP) and abstracts from this into a general framework. This framework is then ...

  9. Cluster analysis - Wikipedia

    en.wikipedia.org/wiki/Cluster_analysis

    It has the advantages of providing principled statistical answers to questions such as how many clusters there are, what clustering method or model to use, and how to detect and deal with outliers. While the theoretical foundation of these methods is excellent, they suffer from overfitting unless constraints are put on the model complexity. A ...