enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Matching (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Matching_(graph_theory)

    In the mathematical discipline of graph theory, a matching or independent edge set in an undirected graph is a set of edges without common vertices. [1] In other words, a subset of the edges is a matching if each vertex appears in at most one edge of that matching. Finding a matching in a bipartite graph can be treated as a network flow problem.

  3. Bipartite graph - Wikipedia

    en.wikipedia.org/wiki/Bipartite_graph

    When modelling relations between two different classes of objects, bipartite graphs very often arise naturally. For instance, a graph of football players and clubs, with an edge between a player and a club if the player has played for that club, is a natural example of an affiliation network, a type of bipartite graph used in social network analysis.

  4. Minimum-cost flow problem - Wikipedia

    en.wikipedia.org/wiki/Minimum-cost_flow_problem

    Reducing Minimum weight bipartite matching to minimum cost max flow problem. Given a bipartite graph G = (A ∪ B, E), the goal is to find the maximum cardinality matching in G that has minimum cost. Let w: E → R be a weight function on the edges of E. The minimum weight bipartite matching problem or assignment problem is to find a perfect ...

  5. Assignment problem - Wikipedia

    en.wikipedia.org/wiki/Assignment_problem

    The assignment problem consists of finding, in a weighted bipartite graph, a matching of maximum size, in which the sum of weights of the edges is minimum. If the numbers of agents and tasks are equal, then the problem is called balanced assignment, and the graph-theoretic version is called minimum-cost perfect matching.

  6. Maximum flow problem - Wikipedia

    en.wikipedia.org/wiki/Maximum_flow_problem

    A matching in G' induces a schedule for F and obviously maximum bipartite matching in this graph produces an airline schedule with minimum number of crews. [29] As it is mentioned in the Application part of this article, the maximum cardinality bipartite matching is an application of maximum flow problem.

  7. List of NP-complete problems - Wikipedia

    en.wikipedia.org/wiki/List_of_NP-complete_problems

    3-dimensional matching [2] [3]: SP1 Bandwidth problem [3]: GT40 Bipartite dimension [3]: GT18 Capacitated minimum spanning tree [3]: ND5 Route inspection problem (also called Chinese postman problem) for mixed graphs (having both directed and undirected edges). The program is solvable in polynomial time if the graph has all undirected or all ...

  8. Bipartite network projection - Wikipedia

    en.wikipedia.org/wiki/Bipartite_network_projection

    Bipartite network projection is an extensively used method for compressing information about bipartite networks. [1] Since the one-mode projection is always less informative than the original bipartite graph, an appropriate method for weighting network connections is often required. Optimal weighting methods reflect the nature of the specific ...

  9. Dinic's algorithm - Wikipedia

    en.wikipedia.org/wiki/Dinic's_algorithm

    Dinic's algorithm or Dinitz's algorithm is a strongly polynomial algorithm for computing the maximum flow in a flow network, conceived in 1970 by Israeli (formerly Soviet) computer scientist Yefim Dinitz. [1]