Search results
Results from the WOW.Com Content Network
Sometimes this remainder is added to the quotient as a fractional part, so 10 / 3 is equal to 3 + 1 / 3 or 3.33..., but in the context of integer division, where numbers have no fractional part, the remainder is kept separately (or exceptionally, discarded or rounded). [5] When the remainder is kept as a fraction, it leads to a rational ...
Quotition is the concept of division most used in measurement. For example, measuring the length of a table using a measuring tape involves comparing the table to the markings on the tape. This is conceptually equivalent to dividing the length of the table by a unit of length, the distance between markings.
The quotient has widespread use throughout mathematics. It has two definitions: either the integer part of a division (in the case of Euclidean division) [2] or a fraction or ratio (in the case of a general division). For example, when dividing 20 (the dividend) by 3 (the divisor), the quotient is 6 (with a remainder of 2) in the first sense ...
A simple fraction (also known as a common fraction or vulgar fraction, where vulgar is Latin for "common") is a rational number written as a/b or , where a and b are both integers. [9] As with other fractions, the denominator (b) cannot be zero. Examples include 1 / 2 , − 8 / 5 , −8 / 5 , and 8 / −5
In calculus, the quotient rule is a method of finding the derivative of a function that is the ratio of two differentiable functions. Let h ( x ) = f ( x ) g ( x ) {\displaystyle h(x)={\frac {f(x)}{g(x)}}} , where both f and g are differentiable and g ( x ) ≠ 0. {\displaystyle g(x)\neq 0.}
Such an interminable division-by-zero algorithm is physically exhibited by some mechanical calculators. [4] In partitive division, the dividend is imagined to be split into parts, and the quotient is the resulting size of each part. For example, imagine ten cookies are to be divided among two friends.
To calculate the whole number quotient of dividing a large number by a small number, the student repeatedly takes away "chunks" of the large number, where each "chunk" is an easy multiple (for example 100×, 10×, 5× 2×, etc.) of the small number, until the large number has been reduced to zero – or the remainder is less than the small ...
Euclidean division of polynomials is very similar to Euclidean division of integers and leads to polynomial remainders. Its existence is based on the following theorem: Given two univariate polynomials a ( x ) and b ( x ) (where b ( x ) is a non-zero polynomial) defined over a field (in particular, the reals or complex numbers ), there exist ...