Search results
Results from the WOW.Com Content Network
Schematic representation of structural classes of protein according to the CATH classification scheme. [1] Proteins are a class of macromolecular organic compounds that are essential to life. They consist of a long polypeptide chain that usually adopts a single stable three-dimensional structure.
Protein names are generally the same as the gene names, but the protein names are not italicized, and the first letter is upper-case. E.g. the name of RNA polymerase is RpoB, and this protein is encoded by rpoB gene. [11]
A representation of the 3D structure of the protein myoglobin showing turquoise α-helices. This protein was the first to have its structure solved by X-ray crystallography. Toward the right-center among the coils, a prosthetic group called a heme group (shown in gray) with a bound oxygen molecule (red).
If relatively short, the recommended UniProt protein name should be used as the article name. If the protein name is verbose, either a widely used protein acronym or the official HUGO gene symbol, followed by "(gene)" if necessary to disambiguate. UniProt names generally follow the IUBMB recommendations:
A protein superfamily is the largest grouping of proteins for which common ancestry can be inferred (see homology). Usually this common ancestry is inferred from structural alignment [ 1 ] and mechanistic similarity, even if no sequence similarity is evident. [ 2 ]
Protein identification is the process of assigning a name to a protein of interest (POI), based on its amino-acid sequence. Typically, only part of the protein’s sequence needs to be determined experimentally in order to identify the protein with reference to databases of protein sequences deduced from the DNA sequences of their genes.
Protein-fragment complementation assays are often used to detect protein–protein interactions. The yeast two-hybrid assay is the most popular of them but there are numerous variations, both used in vitro and in vivo. Pull-down assays are a method to determine the protein binding partners of a given protein. [26]
Ribbon diagrams, also known as Richardson diagrams, are 3D schematic representations of protein structure and are one of the most common methods of protein depiction used today. The ribbon depicts the general course and organisation of the protein backbone in 3D and serves as a visual framework for hanging details of the entire atomic structure ...