Search results
Results from the WOW.Com Content Network
There are three kinds of asymptotes: horizontal, vertical and oblique. For curves given by the graph of a function y = ƒ(x), horizontal asymptotes are horizontal lines that the graph of the function approaches as x tends to +∞ or −∞. Vertical asymptotes are vertical lines near which the function grows without bound.
The word horizontal is derived from the Latin horizon, which derives from the Greek ὁρῐ́ζων, meaning 'separating' or 'marking a boundary'. [2] The word vertical is derived from the late Latin verticalis, which is from the same root as vertex, meaning 'highest point' or more literally the 'turning point' such as in a whirlpool.
Draw the vertical line through P and label its intersection with the given line S. At any point T on the line, draw a right triangle TVU whose sides are horizontal and vertical line segments with hypotenuse TU on the given line and horizontal side of length |B| (see diagram). The vertical side of ∆TVU will have length |A| since the line has ...
Diagram of measurements: D is the slant distance; S is the horizontal distance; Δh is the vertical distance. Tacheometry ( / ˌ t æ k i ˈ ɒ m ɪ t r i / ; from Greek for "quick measure") is a system of rapid surveying , by which the horizontal and vertical positions of points on the Earth's surface relative to one another are determined ...
The examples below show the named parallels (as red lines) on the commonly used Mercator projection and the Transverse Mercator projection. On the former the parallels are horizontal and the meridians are vertical, whereas on the latter there is no exact relationship of parallels and meridians with horizontal and vertical: both are complicated ...
Usually these are the horizontal and vertical coordinates of a point in plane, the rectangular coordinate system. An ordered pair consists of two terms—the abscissa (horizontal, usually x) and the ordinate (vertical, usually y)—which define the location of a point in two-dimensional rectangular space:
For example, a circle of radius 2, centered at the origin of the plane, may be described as the set of all points whose coordinates x and y satisfy the equation x 2 + y 2 = 4; the area, the perimeter and the tangent line at any point can be computed from this equation by using integrals and derivatives, in a way that can be applied to any curve.
The vertical shear displaces points to the right of the y-axis up or down, depending on the sign of m. It leaves vertical lines invariant, but tilts all other lines about the point where they meet the y-axis. Horizontal lines, in particular, get tilted by the shear angle to become lines with slope m.