Search results
Results from the WOW.Com Content Network
Opponent-process theory is a psychological and neurological model that accounts for a wide range of behaviors, including color vision. This model was first proposed in 1878 by Ewald Hering , a German physiologist, and later expanded by Richard Solomon , a 20th-century psychologist.
The Bohr effect favors the T state rather than the R state. (shifts the O 2-saturation curve to the right). Conversely, when the carbon dioxide levels in the blood decrease (i.e., in the lung capillaries), carbon dioxide and protons are released from hemoglobin, increasing the oxygen affinity of the protein.
In the R state, the ionic pairings are absent, meaning that the R state's stability increases when the pH increases, as these residues are less likely to stay protonated in a more basic environment. The Bohr effect works by simultaneously destabilizing the high-affinity R state and stabilizing the low-affinity T state, which leads to an overall ...
The opponent process is a color theory that states that the human visual system interprets information about color by processing signals from photoreceptor cells in an antagonistic manner. The opponent-process theory suggests that there are three opponent channels , each comprising an opposing color pair: red versus green , blue versus yellow ...
In the historical model, each allosteric unit, called a protomer (generally assumed to be a subunit), can exist in two different conformational states – designated 'R' (for relaxed) or 'T' (for tense) states. In any one molecule, all protomers must be in the same state. That is to say, all subunits must be in either the R or the T state.
At its most basic, state-dependent memory is the product of the strengthening of a particular synaptic pathway in the brain. [9] A neural synapse is the space between brain cells, or neurons, that allows chemical signals to be passed from one neuron to another.
The temporal theory of hearing, also called frequency theory or timing theory, states that human perception of sound depends on temporal patterns with which neurons respond to sound in the cochlea. Therefore, in this theory, the pitch of a pure tone is determined by the period of neuron firing patterns—either of single neurons, or groups as ...
ERPs are used extensively in neuroscience, cognitive psychology, cognitive science, and psycho-physiological research. Experimental psychologists and neuroscientists have discovered many different stimuli that elicit reliable ERPs from participants. The timing of these responses is thought to provide a measure of the timing of the brain's ...