Search results
Results from the WOW.Com Content Network
Internal validity, therefore, is more a matter of degree than of either-or, and that is exactly why research designs other than true experiments may also yield results with a high degree of internal validity. In order to allow for inferences with a high degree of internal validity, precautions may be taken during the design of the study.
External validity is the validity of applying the conclusions of a scientific study outside the context of that study. [1] In other words, it is the extent to which the results of a study can generalize or transport to other situations, people, stimuli, and times.
In other words, the relevance of external and internal validity to a research study depends on the goals of the study. Furthermore, conflating research goals with validity concerns can lead to the mutual-internal-validity problem, where theories are able to explain only phenomena in artificial laboratory settings but not the real world. [13] [14]
Validity has two distinct fields of application in psychology. The first is test validity (or Construct validity ), the degree to which a test measures what it was designed to measure. The second is experimental validity (or External validity ), the degree to which a study supports the intended conclusion drawn from the results.
In qualitative research, a member check, also known as informant feedback or respondent validation, is a technique used by researchers to help improve the accuracy, credibility, validity, and transferability (also known as applicability, internal validity, [1] or fittingness) of a study. [2]
Internal and external reliability and validity explained. Uncertainty models, uncertainty quantification, and uncertainty processing in engineering; The relationships between correlational and internal consistency concepts of test reliability; The problem of negative reliabilities
A distinction of sampling bias (albeit not a universally accepted one) is that it undermines the external validity of a test (the ability of its results to be generalized to the rest of the population), while selection bias mainly addresses internal validity for differences or similarities found in the sample at hand. In this sense, errors ...
There are five key principles relating to internal validity (study design) and external validity (generalizability) which rigorous impact evaluations should address: confounding factors, selection bias, spillover effects, contamination, and impact heterogeneity. [5]