Search results
Results from the WOW.Com Content Network
A simple predictor–corrector method (known as Heun's method) can be constructed from the Euler method (an explicit method) and the trapezoidal rule (an implicit method). Consider the differential equation ′ = (,), =, and denote the step size by .
The explicit midpoint method is sometimes also known as the modified Euler method, [1] the implicit method is the most simple collocation method, and, applied to Hamiltonian dynamics, a symplectic integrator. Note that the modified Euler method can refer to Heun's method, [2] for further clarity see List of Runge–Kutta methods.
In mathematics and computational science, Heun's method may refer to the improved [1] or modified Euler's method (that is, the explicit trapezoidal rule [2]), or a similar two-stage Runge–Kutta method. It is named after Karl Heun and is a numerical procedure for solving ordinary differential equations (ODEs) with a given initial value.
Heun's method is a second-order method with two stages. It is also known as the explicit trapezoid rule, improved Euler's method, or modified Euler's method: It is also known as the explicit trapezoid rule, improved Euler's method, or modified Euler's method:
The step size is =. The same illustration for = The midpoint method converges faster than the Euler method, as .. Numerical methods for ordinary differential equations are methods used to find numerical approximations to the solutions of ordinary differential equations (ODEs).
Suppose that we want to solve the differential equation ′ = (,). The trapezoidal rule is given by the formula + = + ((,) + (+, +)), where = + is the step size. [1]This is an implicit method: the value + appears on both sides of the equation, and to actually calculate it, we have to solve an equation which will usually be nonlinear.
The stability function of an explicit Runge–Kutta method is a polynomial, so explicit Runge–Kutta methods can never be A-stable. [32] If the method has order p, then the stability function satisfies () = + (+) as . Thus, it is of interest to study quotients of polynomials of given degrees that approximate the exponential function the best.
Numerical methods for ordinary differential equations approximate solutions to initial value problems of the form ′ = (,), =.. The result is approximations for the value of () at discrete times : = +, where is the time step (sometimes referred to as ) and is an integer.