Search results
Results from the WOW.Com Content Network
The back transfer is so favorable that it takes place in the inverted region where electron-transfer rates become slower. [ 1 ] Thus, electron transfer proceeds efficiently from the first electron acceptor to the next, creating an electron transport chain that ends when it has reached NADPH .
Photodissociation, photolysis, photodecomposition, or photofragmentation is a chemical reaction in which molecules of a chemical compound are broken down by absorption of light or photons. It is defined as the interaction of one or more photons with one target molecule that dissociates into two fragments.
In plants and algae, photosynthesis takes place in organelles called chloroplasts. A typical plant cell contains about 10 to 100 chloroplasts. The chloroplast is enclosed by a membrane. This membrane is composed of a phospholipid inner membrane, a phospholipid outer membrane, and an intermembrane space.
However, during the course of plastid evolution from their cyanobacterial endosymbiotic ancestors, extensive gene transfer from the chloroplast genome to the cell nucleus took place. This results in the four major thylakoid protein complexes being encoded in part by the chloroplast genome and in part by the nuclear genome.
Photoexcitation is the first step in a photochemical process where the reactant is elevated to a state of higher energy, an excited state.The first law of photochemistry, known as the Grotthuss–Draper law (for chemists Theodor Grotthuss and John W. Draper), states that light must be absorbed by a chemical substance in order for a photochemical reaction to take place.
The electron transfers from pheophytin to plastoquinone (PQ), which takes 2e-(in two steps) from pheophytin, and two H + Ions from the stroma to form PQH 2. This plastoquinol is later oxidized back to PQ, releasing the 2e - to the cytochrome b 6 f complex and the two H + ions into the thylakoid lumen .
Photobiology is the scientific study of the beneficial and harmful interactions of light (technically, non-ionizing radiation) in living organisms. [1] The field includes the study of photophysics, photochemistry, photosynthesis, photomorphogenesis, visual processing, circadian rhythms, photomovement, bioluminescence, and ultraviolet radiation effects.
This process of reducing quinone is comparable to that which takes place in the bacterial reaction center. Photosystem II obtains electrons by oxidizing water in a process called photolysis. Molecular oxygen is a byproduct of this process, and it is this reaction that supplies the atmosphere with oxygen.