enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. 1/2 + 1/4 + 1/8 + 1/16 + ⋯ - ⋯ - Wikipedia

    en.wikipedia.org/wiki/1/2_%2B_1/4_%2B_1/8_%2B_1/...

    In mathematics, the infinite series ⁠ 1 / 2 ⁠ + ⁠ 1 / 4 ⁠ + ⁠ 1 / 8 ⁠ + ⁠ 1 / 16 ⁠ + ··· is an elementary example of a geometric series that converges absolutely. The sum of the series is 1. In summation notation, this may be expressed as

  3. Summation - Wikipedia

    en.wikipedia.org/wiki/Summation

    The summation of an explicit sequence is denoted as a succession of additions. For example, summation of [1, 2, 4, 2] is denoted 1 + 2 + 4 + 2, and results in 9, that is, 1 + 2 + 4 + 2 = 9. Because addition is associative and commutative, there is no need for parentheses, and the result is the same irrespective of the order of the summands ...

  4. Kahan summation algorithm - Wikipedia

    en.wikipedia.org/wiki/Kahan_summation_algorithm

    t = 10003.1 + 2.75987 But still only few meet the digits of sum. = 10005.85987 Normalization done, next round to six digits. = 10005.9 Again, many digits have been lost, but c helped nudge the round-off. c = (10005.9 - 10003.1) - 2.75987 Estimate the accumulated error, based on the adjusted y.

  5. Ramanujan summation - Wikipedia

    en.wikipedia.org/wiki/Ramanujan_summation

    Ramanujan summation is a technique invented by the mathematician Srinivasa Ramanujan for assigning a value to divergent infinite series.Although the Ramanujan summation of a divergent series is not a sum in the traditional sense, it has properties that make it mathematically useful in the study of divergent infinite series, for which conventional summation is undefined.

  6. Summation by parts - Wikipedia

    en.wikipedia.org/wiki/Summation_by_parts

    A summation-by-parts (SBP) finite difference operator conventionally consists of a centered difference interior scheme and specific boundary stencils that mimics behaviors of the corresponding integration-by-parts formulation. [3] [4] The boundary conditions are usually imposed by the Simultaneous-Approximation-Term (SAT) technique. [5]

  7. Pairwise summation - Wikipedia

    en.wikipedia.org/wiki/Pairwise_summation

    Pairwise summation is the default summation algorithm in NumPy [9] and the Julia technical-computing language, [10] where in both cases it was found to have comparable speed to naive summation (thanks to the use of a large base case).

  8. Fibonacci sequence - Wikipedia

    en.wikipedia.org/wiki/Fibonacci_sequence

    The number of binary strings of length n without an even number of consecutive 0 s or 1 s is 2F n. For example, out of the 16 binary strings of length 4, there are 2F 4 = 6 without an even number of consecutive 0 s or 1 s—they are 0001, 0111, 0101, 1000, 1010, 1110. There is an equivalent statement about subsets.

  9. Tensor contraction - Wikipedia

    en.wikipedia.org/wiki/Tensor_contraction

    [2] [3] Applying the canonical pairing to the kth V factor and the lth V ∗ factor, and using the identity on all other factors, defines the (k, l) contraction operation, which is a linear map that yields a tensor of type (m − 1, n − 1). [2] By analogy with the (1, 1) case, the general contraction operation is sometimes called the trace.