enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Power of two - Wikipedia

    en.wikipedia.org/wiki/Power_of_two

    Two to the power of n, written as 2 n, is the number of values in which the bits in a binary word of length n can be set, where each bit is either of two values. A word, interpreted as representing an integer in a range starting at zero, referred to as an "unsigned integer", can represent values from 0 (000...000 2) to 2 n − 1 (111...111 2) inclusively.

  3. Formula calculator - Wikipedia

    en.wikipedia.org/wiki/Formula_calculator

    The formula calculator concept can be applied to all types of calculator, including arithmetic, scientific, statistics, financial and conversion calculators. The calculation can be typed or pasted into an edit box of: A software package that runs on a computer, for example as a dialog box. An on-line formula calculator hosted on a web site.

  4. Exponentiation - Wikipedia

    en.wikipedia.org/wiki/Exponentiation

    Powers of 2 appear in set theory, since a set with n members has a power set, the set of all of its subsets, which has 2 n members. Integer powers of 2 are important in computer science. The positive integer powers 2 n give the number of possible values for an n-bit integer binary number; for example, a byte may take 2 8 = 256 different values.

  5. Signed number representations - Wikipedia

    en.wikipedia.org/wiki/Signed_number_representations

    Negative zero behaves exactly like positive zero: when used as an operand in any calculation, the result will be the same whether an operand is positive or negative zero. The disadvantage is that the existence of two forms of the same value necessitates two comparisons when checking for equality with zero.

  6. Modular exponentiation - Wikipedia

    en.wikipedia.org/wiki/Modular_exponentiation

    For example, given b = 5, e = 3 and m = 13, dividing 5 3 = 125 by 13 leaves a remainder of c = 8. Modular exponentiation can be performed with a negative exponent e by finding the modular multiplicative inverse d of b modulo m using the extended Euclidean algorithm. That is: c = b e mod m = d −e mod m, where e < 0 and b ⋅ d ≡ 1 (mod m).

  7. Finger binary - Wikipedia

    en.wikipedia.org/wiki/Finger_binary

    The values of each raised finger are added together to arrive at a total number. In the one-handed version, all fingers raised is thus 31 (16 + 8 + 4 + 2 + 1), and all fingers lowered (a fist) is 0. In the two-handed system, all fingers raised is 1,023 (512 + 256 + 128 + 64 + 32 + 16 + 8 + 4 + 2 + 1) and two fists (no fingers raised) represents 0.

  8. Windows Calculator - Wikipedia

    en.wikipedia.org/wiki/Windows_Calculator

    A simple arithmetic calculator was first included with Windows 1.0. [6]In Windows 3.0, a scientific mode was added, which included exponents and roots, logarithms, factorial-based functions, trigonometry (supports radian, degree and gradians angles), base conversions (2, 8, 10, 16), logic operations, statistical functions such as single variable statistics and linear regression.

  9. Scientific notation - Wikipedia

    en.wikipedia.org/wiki/Scientific_notation

    Converting a number from scientific notation to decimal notation, first remove the × 10 n on the end, then shift the decimal separator n digits to the right (positive n) or left (negative n). The number 1.2304 × 10 6 would have its decimal separator shifted 6 digits to the right and become 1,230,400 , while −4.0321 × 10 −3 would have its ...