Search results
Results from the WOW.Com Content Network
Atomic emission spectroscopy (AES) is a method of chemical analysis that uses the intensity of light emitted from a flame, plasma, arc, or spark at a particular wavelength to determine the quantity of an element in a sample.
Flame photometry is a type of atomic emission spectroscopy. It is also known as flame emission spectroscopy . [ 1 ] [ 2 ] A photoelectric flame photometer is an instrument used in inorganic chemical analysis to determine the concentration of certain metal ions, among them sodium , potassium , lithium , and calcium . [ 3 ]
An emission spectrum is formed when an excited gas is viewed directly through a spectroscope. Schematic diagram of spontaneous emission. Emission spectroscopy is a spectroscopic technique which examines the wavelengths of photons emitted by atoms or molecules during their transition from an excited state to a lower energy state.
The nature of the excited and ground states depends only on the element. Ordinarily, there are no bonds to be broken, and molecular orbital theory is not applicable. The emission spectrum observed in flame test is also the basis of flame emission spectroscopy, atomic emission spectroscopy, and flame photometry. [4] [13]
Direct-current plasma (DCP) is a type of plasma source used for atomic emission spectroscopy that utilizes three electrodes to produce a plasma stream. [1] The most common three-electrode DCP apparatus consists of two graphite anode blocks and a tungsten cathode block arranged in an inverted-Y arrangement.
Specific colors can be imparted to the flame by introduction of excitable species with bright emission spectrum lines. In analytical chemistry, this effect is used in flame tests (or flame emission spectroscopy) to determine presence of some metal ions.
GFAA spectrometry instruments have the following basic features: 1. a source of light (lamp) that emits resonance line radiation; 2. an atomization chamber (graphite tube) in which the sample is vaporized; 3. a monochromator for selecting only one of the characteristic wavelengths (visible or ultraviolet) of the element of interest; 4. a detector, generally a photomultiplier tube (light ...
Electron capture detector developed by James Lovelock in the Science Museum, London Electron capture detector, Science History Institute. The electron capture detector is used for detecting electron-absorbing components (high electronegativity) such as halogenated compounds in the output stream of a gas chromatograph.