Search results
Results from the WOW.Com Content Network
m is a divisor of n (also called m divides n, or n is divisible by m) if all prime factors of m have at least the same multiplicity in n. The divisors of n are all products of some or all prime factors of n (including the empty product 1 of no prime factors). The number of divisors can be computed by increasing all multiplicities by 1 and then ...
The Goldbach conjecture verification project reports that it has computed all primes smaller than 4×10 18. [2] That means 95,676,260,903,887,607 primes [3] (nearly 10 17), but they were not stored. There are known formulae to evaluate the prime-counting function (the number of primes smaller than a given value) faster than computing the primes.
If one of the factors is composite, it can in turn be written as a product of smaller factors, for example 60 = 3 · 20 = 3 · (5 · 4). Continuing this process until every factor is prime is called prime factorization; the result is always unique up to the order of the factors by the prime factorization theorem.
The factorizations are often not unique in the sense that the unit could be absorbed into any other factor with exponent equal to one. The entry 4+2i = −i(1+i) 2 (2+i), for example, could also be written as 4+2i= (1+i) 2 (1−2i). The entries in the table resolve this ambiguity by the following convention: the factors are primes in the right ...
= 1.782 661 84 (45) × 10 −36 kg [3] gamma: γ ≡ 1 μg = 1 μg grain: gr ≡ 1 ⁄ 7000 lb av ≡ 64.798 91 mg: grave: gv grave was the original name of the kilogram ≡ 1 kg hundredweight (long) long cwt or cwt ≡ 112 lb av = 50.802 345 44 kg: hundredweight (short); cental: sh cwt ≡ 100 lb av = 45.359 237 kg: hyl; metric slug: ≡ 1 kgf ...
The same method can also be illustrated with a Venn diagram as follows, with the prime factorization of each of the two numbers demonstrated in each circle and all factors they share in common in the intersection. The lcm then can be found by multiplying all of the prime numbers in the diagram. Here is an example: 48 = 2 × 2 × 2 × 2 × 3,
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
If none of its prime factors are repeated, it is called squarefree. (All prime numbers and 1 are squarefree.) For example, 72 = 2 3 × 3 2, all the prime factors are repeated, so 72 is a powerful number. 42 = 2 × 3 × 7, none of the prime factors are repeated, so 42 is squarefree. Euler diagram of numbers under 100: