Search results
Results from the WOW.Com Content Network
Mathematically, the derivatives of the Gaussian function can be represented using Hermite functions. For unit variance, the n-th derivative of the Gaussian is the Gaussian function itself multiplied by the n-th Hermite polynomial, up to scale. Consequently, Gaussian functions are also associated with the vacuum state in quantum field theory.
A random element h ∈ H is said to be normal if for any constant a ∈ H the scalar product (a, h) has a (univariate) normal distribution. The variance structure of such Gaussian random element can be described in terms of the linear covariance operator K: H → H. Several Gaussian processes became popular enough to have their own names ...
In statistics, the Q-function is the tail distribution function of the standard normal distribution. [ 1 ] [ 2 ] In other words, Q ( x ) {\displaystyle Q(x)} is the probability that a normal (Gaussian) random variable will obtain a value larger than x {\displaystyle x} standard deviations.
A random variate defined as = (() + (() ())) + with the cumulative distribution function and its inverse, a uniform random number on (,), follows the distribution truncated to the range (,). This is simply the inverse transform method for simulating random variables.
In general, random variables may be uncorrelated but statistically dependent. But if a random vector has a multivariate normal distribution then any two or more of its components that are uncorrelated are independent. This implies that any two or more of its components that are pairwise independent are independent.
In statistics, a Gaussian random field (GRF) is a random field involving Gaussian probability density functions of the variables. A one-dimensional GRF is also called a Gaussian process . An important special case of a GRF is the Gaussian free field .
The Box–Muller transform, by George Edward Pelham Box and Mervin Edgar Muller, [1] is a random number sampling method for generating pairs of independent, standard, normally distributed (zero expectation, unit variance) random numbers, given a source of uniformly distributed random numbers.
Its cumulant generating function (logarithm of the characteristic function) [contradictory] is the inverse of the cumulant generating function of a Gaussian random variable. To indicate that a random variable X is inverse Gaussian-distributed with mean μ and shape parameter λ we write X ∼ IG ( μ , λ ) {\displaystyle X\sim ...