Search results
Results from the WOW.Com Content Network
Surface map of oceanic crust showing the generation of younger (red) crust and eventual destruction of older (blue) crust. This demonstrates the crustal spatial evolution at the Earth's surface dictated by plate tectonics. Earth's crustal evolution involves the formation, destruction and renewal of the rocky outer shell at that planet's surface.
The Vine–Matthews–Morley hypothesis, also known as the Morley–Vine–Matthews hypothesis, was the first key scientific test of the seafloor spreading theory of continental drift and plate tectonics. Its key impact was that it allowed the rates of plate motions at mid-ocean ridges to be computed.
It focuses on geological processes, such as plate tectonics, that have changed the Earth's surface and subsurface over time and the use of methods including stratigraphy, structural geology, paleontology, and sedimentology to tell the sequence of these events.
Plate tectonics (from Latin tectonicus, from Ancient Greek τεκτονικός (tektonikós) 'pertaining to building') [1] is the scientific theory that Earth's lithosphere comprises a number of large tectonic plates, which have been slowly moving since 3–4 billion years ago.
Subduction is the density-driven process by which one tectonic plate moves under another and sinks into the mantle at a convergent boundary.Gravitational pull from dense slabs provides approximately 90% of the driving force for plate tectonics, [2] and consequently subduction is crucial in changing the Earth's layout, guiding its thermal evolution [3] and building its compositional structure. [1]
The evolution of tectonophysics is closely linked to the history of the continental drift and plate tectonics hypotheses. The continental drift/ Airy-Heiskanen isostasy hypothesis had many flaws and scarce data.
Marine geological studies were of extreme importance in providing the critical evidence for sea floor spreading and plate tectonics in the years following World War II. The deep ocean floor is the last essentially unexplored frontier and detailed mapping in support of economic ( petroleum and metal mining ), natural disaster mitigation, and ...
The samples gave further evidence to support the plate tectonics theory, which at the time attempted to explain the formation of mountain ranges, earthquakes, and oceanic trenches. [6] Another discovery was how youthful the ocean floor is in comparison to Earth's geologic history. After analysis of samples, scientists concluded that the ocean ...