enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Newton's method - Wikipedia

    en.wikipedia.org/wiki/Newton's_method

    An illustration of Newton's method. In numerical analysis, the Newton–Raphson method, also known simply as Newton's method, named after Isaac Newton and Joseph Raphson, is a root-finding algorithm which produces successively better approximations to the roots (or zeroes) of a real-valued function.

  3. Newton's method in optimization - Wikipedia

    en.wikipedia.org/wiki/Newton's_method_in...

    Newton's method uses curvature information (i.e. the second derivative) to take a more direct route. In calculus, Newton's method (also called Newton–Raphson) is an iterative method for finding the roots of a differentiable function, which are solutions to the equation =.

  4. Numerical methods for ordinary differential equations - Wikipedia

    en.wikipedia.org/wiki/Numerical_methods_for...

    The backward Euler method is an implicit method, meaning that we have to solve an equation to find y n+1. One often uses fixed-point iteration or (some modification of) the Newton–Raphson method to achieve this.

  5. Root-finding algorithm - Wikipedia

    en.wikipedia.org/wiki/Root-finding_algorithm

    Newton's method may not converge if started too far away from a root. However, when it does converge, it is faster than the bisection method; its order of convergence is usually quadratic whereas the bisection method's is linear. Newton's method is also important because it readily generalizes to higher-dimensional problems.

  6. Equation solving - Wikipedia

    en.wikipedia.org/wiki/Equation_solving

    An example of using Newton–Raphson method to solve numerically the equation f(x) = 0. In mathematics, to solve an equation is to find its solutions, which are the values (numbers, functions, sets, etc.) that fulfill the condition stated by the equation, consisting generally of two expressions related by an equals sign.

  7. Methods of computing square roots - Wikipedia

    en.wikipedia.org/wiki/Methods_of_computing...

    If instead one performed Newton-Raphson iterations beginning with an estimate of 10, it would take two iterations to get to 3.66, matching the hyperbolic estimate. For a more typical case like 75, the hyperbolic estimate of 8.00 is only 7.6% low, and 5 Newton-Raphson iterations starting at 75 would be required to obtain a more accurate result.

  8. Power-flow study - Wikipedia

    en.wikipedia.org/wiki/Power-flow_study

    Fast-decoupled-load-flow method is a variation on Newton–Raphson that exploits the approximate decoupling of active and reactive flows in well-behaved power networks, and additionally fixes the value of the Jacobian during the iteration in order to avoid costly matrix decompositions. Also referred to as "fixed-slope, decoupled NR".

  9. Fluid–structure interaction - Wikipedia

    en.wikipedia.org/wiki/Fluid–structure_interaction

    The Newton–Raphson method or a different fixed-point iteration can be used to solve FSI problems. Methods based on Newton–Raphson iteration are used in both the monolithic [17] [18] [19] and the partitioned [20] [21] approach. These methods solve the nonlinear flow equations and the structural equations in the entire fluid and solid domain ...