Search results
Results from the WOW.Com Content Network
The average silhouette of the data is another useful criterion for assessing the natural number of clusters. The silhouette of a data instance is a measure of how closely it is matched to data within its cluster and how loosely it is matched to data of the neighboring cluster, i.e., the cluster whose average distance from the datum is lowest. [8]
The numerator of the CH index is the between-cluster separation (BCSS) divided by its degrees of freedom. The number of degrees of freedom of BCSS is k - 1, since fixing the centroids of k - 1 clusters also determines the k th centroid, as its value makes the weighted sum of all centroids match the overall data centroid.
Correlation clustering (according to this definition) can be shown to be closely related to biclustering. As in biclustering, the goal is to identify groups of objects that share a correlation in some of their attributes; where the correlation is usually typical for the individual clusters.
In computer science, data stream clustering is defined as the clustering of data that arrive continuously such as telephone records, multimedia data, financial transactions etc. Data stream clustering is usually studied as a streaming algorithm and the objective is, given a sequence of points, to construct a good clustering of the stream, using a small amount of memory and time.
Understanding these "cluster models" is key to understanding the differences between the various algorithms. Typical cluster models include: Connectivity model s: for example, hierarchical clustering builds models based on distance connectivity. Centroid model s: for example, the k-means algorithm represents each cluster by a single mean vector.
In data mining, k-means++ [1] [2] is an algorithm for choosing the initial values (or "seeds") for the k-means clustering algorithm. It was proposed in 2007 by David Arthur and Sergei Vassilvitskii, as an approximation algorithm for the NP-hard k-means problem—a way of avoiding the sometimes poor clusterings found by the standard k-means algorithm.
Model-based clustering [1] based on a statistical model for the data, usually a mixture model. This has several advantages, including a principled statistical basis for clustering, and ways to choose the number of clusters, to choose the best clustering model, to assess the uncertainty of the clustering, and to identify outliers that do not ...
The Dunn index (DI) (introduced by J. C. Dunn in 1974) is a metric for evaluating clustering algorithms. [1] [2] This is part of a group of validity indices including the Davies–Bouldin index or Silhouette index, in that it is an internal evaluation scheme, where the result is based on the clustered data itself.