enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Shear strength - Wikipedia

    en.wikipedia.org/wiki/Shear_strength

    In structural and mechanical engineering, the shear strength of a component is important for designing the dimensions and materials to be used for the manufacture or construction of the component (e.g. beams, plates, or bolts). In a reinforced concrete beam, the main purpose of reinforcing bar (rebar) stirrups is to increase the shear strength.

  3. Properties of concrete - Wikipedia

    en.wikipedia.org/wiki/Properties_of_concrete

    Twenty eight days is a long wait to determine if desired strengths are going to be obtained, so three-day and seven-day strengths can be useful to predict the ultimate 28-day compressive strength of the concrete. A 25% strength gain between 7 and 28 days is often observed with 100% OPC (ordinary Portland cement) mixtures, and between 25% and 40 ...

  4. Structural engineering theory - Wikipedia

    en.wikipedia.org/wiki/Structural_engineering_theory

    Strength depends upon material properties. The strength of a material depends on its capacity to withstand axial stress, shear stress, bending, and torsion.The strength of a material is measured in force per unit area (newtons per square millimetre or N/mm², or the equivalent megapascals or MPa in the SI system and often pounds per square inch psi in the United States Customary Units system).

  5. Contained earth - Wikipedia

    en.wikipedia.org/wiki/Contained_earth

    Contained earth (CE) is a structurally designed natural building material that combines containment, inexpensive reinforcement, and strongly cohesive earthen walls.CE is earthbag construction that can be calibrated for several seismic risk levels based on building soil strength and plan standards for adequate bracing.

  6. Size effect on structural strength - Wikipedia

    en.wikipedia.org/wiki/Size_Effect_on_Structural...

    A pronounced energetic size effect occurs in shear, torsional and punching failures of reinforced concrete, in pullout of anchors from concrete, in compression failure of slender reinforced concrete columns and prestressed concrete beams, in compression and tensile failures of fiber-polymer composites and sandwich structures, and in the ...

  7. Mohr–Coulomb theory - Wikipedia

    en.wikipedia.org/wiki/Mohr–Coulomb_theory

    Mohr–Coulomb theory is a mathematical model (see yield surface) describing the response of brittle materials such as concrete, or rubble piles, to shear stress as well as normal stress. Most of the classical engineering materials follow this rule in at least a portion of their shear failure envelope.

  8. Concrete slab - Wikipedia

    en.wikipedia.org/wiki/Concrete_slab

    As a result, any stress induced by a load, static or dynamic, must be within the limit of the concrete's flexural strength to prevent cracking. [19] Since unreinforced concrete is relatively very weak in tension, it is important to consider the effects of tensile stress caused by reactive soil, wind uplift, thermal expansion, and cracking. [20]

  9. Seismic retrofit - Wikipedia

    en.wikipedia.org/wiki/Seismic_retrofit

    Shown here is an exterior shear reinforcement of a conventional reinforced concrete dormitory building. In this case, there was sufficient vertical strength in the building columns and sufficient shear strength in the lower stories that only limited shear reinforcement was required to make it earthquake resistant for this location near the ...