Search results
Results from the WOW.Com Content Network
A signed graph is the special kind of gain graph in which the gain group has order 2. The pair (G, B(Σ)) determined by a signed graph Σ is a special kind of biased graph. The sign group has the special property, not shared by larger gain groups, that the edge signs are determined up to switching by the set B(Σ) of balanced cycles. [19]
The 1980 monograph Spectra of Graphs [16] by Cvetković, Doob, and Sachs summarised nearly all research to date in the area. In 1988 it was updated by the survey Recent Results in the Theory of Graph Spectra. [17] The 3rd edition of Spectra of Graphs (1995) contains a summary of the further recent contributions to the subject. [15]
The Laplacian matrix is the easiest to define for a simple graph, but more common in applications for an edge-weighted graph, i.e., with weights on its edges — the entries of the graph adjacency matrix. Spectral graph theory relates properties of a graph to a spectrum, i.e., eigenvalues, and eigenvectors of matrices associated with the graph ...
Signed graphs allow for both favorable and adverse relationships and serve as a common model choice for various data analysis applications, e.g., correlation clustering. The stochastic block model can be trivially extended to signed graphs by assigning both positive and negative edge weights or equivalently using a difference of adjacency ...
The relationship between a graph and the eigenvalues and eigenvectors of its adjacency matrix is studied in spectral graph theory. The adjacency matrix of a graph should be distinguished from its incidence matrix , a different matrix representation whose elements indicate whether vertex–edge pairs are incident or not, and its degree matrix ...
An example connected graph, with 6 vertices. Partitioning into two connected graphs. In multivariate statistics, spectral clustering techniques make use of the spectrum (eigenvalues) of the similarity matrix of the data to perform dimensionality reduction before clustering in fewer dimensions. The similarity matrix is provided as an input and ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
In condensed matter physics, Hofstadter's butterfly is a graph of the spectral properties of non-interacting two-dimensional electrons in a perpendicular magnetic field in a lattice. The fractal, self-similar nature of the spectrum was discovered in the 1976 Ph.D. work of Douglas Hofstadter [ 1 ] and is one of the early examples of modern ...