Search results
Results from the WOW.Com Content Network
Numbers are represented in binary as IEEE 754 floating point doubles. Although this format provides an accuracy of nearly 16 significant digits, it cannot always exactly represent real numbers, including fractions. This becomes an issue when comparing or formatting numbers. For example:
modified_identifier_list «As «non_array_type««array_rank_specifier»» (multiple declarator); valid declaration statements are of the form Dim declarator_list , where, for the purpose of semantic analysis, to convert the declarator_list to a list of only single declarators:
So, PHP can have non-consecutively numerically indexed arrays. The keys have to be of integer (floating point numbers are truncated to integer) or string type, while values can be of arbitrary types, including other arrays and objects. The arrays are heterogeneous: a single array can have keys of different types.
In these examples, if N < 1 then the body of loop may execute once (with I having value 1) or not at all, depending on the programming language. In many programming languages, only integers can be reliably used in a count-controlled loop. Floating-point numbers are represented imprecisely due to hardware constraints, so a loop such as
The end-loop marker specifies the name of the index variable, which must correspond to the name of the index variable at the start of the for-loop. Some languages (PL/I, Fortran 95, and later) allow a statement label at the start of a for-loop that can be matched by the compiler against the same text on the corresponding end-loop statement.
Intersection types are useful for describing overloaded function types: for example, if "int → int" is the type of functions taking an integer argument and returning an integer, and "float → float" is the type of functions taking a float argument and returning a float, then the intersection of these two types can be used to describe ...
AOL Mail welcomes Verizon customers to our safe and delightful email experience!
A floating-point variable can represent a wider range of numbers than a fixed-point variable of the same bit width at the cost of precision. A signed 32-bit integer variable has a maximum value of 2 31 − 1 = 2,147,483,647, whereas an IEEE 754 32-bit base-2 floating-point variable has a maximum value of (2 − 2 −23 ) × 2 127 ≈ 3.4028235 ...