Search results
Results from the WOW.Com Content Network
Arsenic forms colorless, odorless, crystalline oxides As 2 O 3 ("white arsenic") and As 2 O 5 which are hygroscopic and readily soluble in water to form acidic solutions. Arsenic(V) acid is a weak acid and the salts are called arsenates, [5] the most common arsenic contamination of groundwater, and a problem that affects many people. Synthetic ...
The presence of sulfur is another factor that affects the transformation of arsenic in natural water. Arsenic can precipitate when metal sulfides form. In this way, arsenic is removed from the water and its mobility decreases. When oxygen is present, bacteria oxidize reduced sulfur to generate energy, potentially releasing bound arsenic.
In its standard state arsine is a colorless, denser-than-air gas that is slightly soluble in water (2% at 20 °C) [1] and in many organic solvents as well. [citation needed] Arsine itself is odorless, [5] but it oxidizes in air and this creates a slight garlic or fish-like scent when the compound is present above 0.5 ppm. [6]
Arsenate readily reacts with metals to form arsenate metal compounds. [2] [3] Arsenate is a moderate oxidizer and an electron acceptor, with an electrode potential of +0.56 V for its reduction to arsenite. [4] Due to arsenic having the same valency and similar atomic radius to phosphorus, arsenate shares similar geometry and reactivity with ...
In chemistry, an arsenite is a chemical compound containing an arsenic oxyanion where arsenic has oxidation state +3. Note that in fields that commonly deal with groundwater chemistry, arsenite is used generically to identify soluble As III anions. IUPAC have recommended that arsenite compounds are to be named as arsenate(III), for example ...
The bond between a water molecule and the metal ion is a dative covalent bond, with the oxygen atom donating both electrons to the bond. Each coordinated water molecule may be attached by hydrogen bonds to other water molecules. The latter are said to reside in the second coordination sphere.
A recent study by the Center for Environmental Health has revealed high levels of arsenic in two brands of bottled water sold by Whole Foods and Walmart.
Arsenic (III) binding sites usually use thiol groups of cysteine residues. The catalysis involves thiolates of Cys72, Cys174, and Cys224. In an SN2 reaction, the positive charge on the SAM sulfur atom pulls the bonding electron from the carbon of the methyl group, which interacts with the arsenic lone pair to form an As−C bond, leaving SAH. [31]