enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Carbon–nitrogen bond - Wikipedia

    en.wikipedia.org/wiki/Carbonnitrogen_bond

    Similar to carboncarbon bonds, these bonds can form stable double bonds, as in imines; and triple bonds, such as nitriles. Bond lengths range from 147.9 pm for simple amines to 147.5 pm for C-N= compounds such as nitromethane to 135.2 pm for partial double bonds in pyridine to 115.8 pm for triple bonds as in nitriles. [2]

  3. Bond length - Wikipedia

    en.wikipedia.org/wiki/Bond_length

    It is generally considered the average length for a carboncarbon single bond, but is also the largest bond length that exists for ordinary carbon covalent bonds. Since one atomic unit of length (i.e., a Bohr radius) is 52.9177 pm, the C–C bond length is 2.91 atomic units, or approximately three Bohr radii long.

  4. Double bond - Wikipedia

    en.wikipedia.org/wiki/Double_bond

    In chemistry, a double bond is a covalent bond between two atoms involving four bonding electrons as opposed to two in a single bond. Double bonds occur most commonly between two carbon atoms, for example in alkenes. Many double bonds exist between two different elements: for example, in a carbonyl group between a carbon atom and an oxygen atom ...

  5. Covalent radius - Wikipedia

    en.wikipedia.org/wiki/Covalent_radius

    In principle, the sum of the two covalent radii should equal the covalent bond length between two atoms, R(AB) = r(A) + r(B). Moreover, different radii can be introduced for single, double and triple bonds (r 1, r 2 and r 3 below), in a purely operational sense. These relationships are certainly not exact because the size of an atom is not ...

  6. Imine - Wikipedia

    en.wikipedia.org/wiki/Imine

    Planarity results from the sp 2-hybridization of the mutually double-bonded carbon and the nitrogen atoms. The C=N distance is 1.29–1.31 Å for nonconjugated imines and 1.35 Å for conjugated imines. By contrast, C−N distances in amines and nitriles are 1.47 and 1.16 Å respectively. [4] Rotation about the C=N bond is slow.

  7. Diatomic molecule - Wikipedia

    en.wikipedia.org/wiki/Diatomic_molecule

    All diatomic molecules are linear and characterized by a single parameter which is the bond length or distance between the two atoms. Diatomic nitrogen has a triple bond, diatomic oxygen has a double bond, and diatomic hydrogen, fluorine, chlorine, iodine, and bromine all have single bonds. [6]

  8. Double bond rule - Wikipedia

    en.wikipedia.org/wiki/Double_bond_rule

    Moreover, the multiple bonds of the elements with n=2 are much stronger than usual, because lone pair repulsion weakens their sigma bonding but not their pi bonding.) [2] An example is the rapid polymerization that occurs upon condensation of disulfur, the heavy analogue of O 2.

  9. Tetrahedral molecular geometry - Wikipedia

    en.wikipedia.org/wiki/Tetrahedral_molecular_geometry

    In a tetrahedral molecular geometry, a central atom is located at the center with four substituents that are located at the corners of a tetrahedron.The bond angles are arccos(− ⁠ 1 / 3 ⁠) = 109.4712206...° ≈ 109.5° when all four substituents are the same, as in methane (CH 4) [1] [2] as well as its heavier analogues.