Search results
Results from the WOW.Com Content Network
Larger kurtosis indicates a more serious outlier problem, and may lead the researcher to choose alternative statistical methods. D'Agostino's K-squared test is a goodness-of-fit normality test based on a combination of the sample skewness and sample kurtosis, as is the Jarque–Bera test for normality.
Example distribution with positive skewness. These data are from experiments on wheat grass growth. In probability theory and statistics, skewness is a measure of the asymmetry of the probability distribution of a real-valued random variable about its mean. The skewness value can be positive, zero, negative, or undefined.
Let X and Y each be normally distributed with correlation coefficient ρ. The cokurtosis terms are (,,,) = +(,,,) = (,,,) =Since the cokurtosis depends only on ρ, which is already completely determined by the lower-degree covariance matrix, the cokurtosis of the bivariate normal distribution contains no new information about the distribution.
Explicit expressions for the skewness and kurtosis are lengthy. [8] As β {\displaystyle \beta } tends to infinity the mean tends to α {\displaystyle \alpha } , the variance and skewness tend to zero and the excess kurtosis tends to 6/5 (see also related distributions below).
The shape of a distribution may be considered either descriptively, using terms such as "J-shaped", or numerically, using quantitative measures such as skewness and kurtosis.
The first is the square of the skewness: β 1 = γ 1 where γ 1 is the skewness, or third standardized moment. The second is the traditional kurtosis, or fourth standardized moment: β 2 = γ 2 + 3. (Modern treatments define kurtosis γ 2 in terms of cumulants instead of moments, so that for a normal distribution we have γ 2 = 0 and β 2 = 3.
where is the beta function, is the location parameter, > is the scale parameter, < < is the skewness parameter, and > and > are the parameters that control the kurtosis. and are not parameters, but functions of the other parameters that are used here to scale or shift the distribution appropriately to match the various parameterizations of this distribution.
A fat-tailed distribution is a probability distribution that exhibits a large skewness or kurtosis, relative to that of either a normal distribution or an exponential distribution. [when defined as?] In common usage, the terms fat-tailed and heavy-tailed are sometimes synonymous; fat-tailed is sometimes also defined as a subset of heavy-tailed ...