Search results
Results from the WOW.Com Content Network
In statistics, nonlinear regression is a form of regression analysis in which observational data are modeled by a function which is a nonlinear combination of the model parameters and depends on one or more independent variables. The data are fitted by a method of successive approximations (iterations).
Non-linear least squares is the form of least squares analysis used to fit a set of m observations with a model that is non-linear in n unknown parameters (m ≥ n). It is used in some forms of nonlinear regression. The basis of the method is to approximate the model by a linear one and to refine the parameters by successive iterations.
The generalized additive model for location, scale and shape (GAMLSS) is a semiparametric regression model in which a parametric statistical distribution is assumed for the response (target) variable but the parameters of this distribution can vary according to explanatory variables.
Nonlinear mixed-effects models are a special case of regression analysis for which a range of different software solutions are available. The statistical properties of nonlinear mixed-effects models make direct estimation by a BLUE estimator impossible. Nonlinear mixed effects models are therefore estimated according to Maximum Likelihood ...
It is a generalization of Deming regression and also of orthogonal regression, and can be applied to both linear and non-linear models. The total least squares approximation of the data is generically equivalent to the best, in the Frobenius norm, low-rank approximation of the data matrix. [1]
The figure on the right shows a plot of this function: a line giving the predicted ^ versus x, with the original values of y shown as red dots. The data at the extremes of x indicates that the relationship between y and x may be non-linear (look at the red dots relative to the regression line at low and high values of x). We thus turn to MARS ...
For example, a run sequence plot to check for significant shifts in location, scale, start-up effects and outliers. A lag plot can be used to verify the residuals are independent. The outliers also appear in the lag plot, and a histogram and normal probability plot to check for skewness or other non- normality in the residuals.
Functional regression is a version of regression analysis when responses or covariates include functional data.Functional regression models can be classified into four types depending on whether the responses or covariates are functional or scalar: (i) scalar responses with functional covariates, (ii) functional responses with scalar covariates, (iii) functional responses with functional ...