enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Greatest common divisor - Wikipedia

    en.wikipedia.org/wiki/Greatest_common_divisor

    The greatest common divisor (GCD) of integers a and b, at least one of which is nonzero, is the greatest positive integer d such that d is a divisor of both a and b; that is, there are integers e and f such that a = de and b = df, and d is the largest such integer.

  3. Euclidean algorithm - Wikipedia

    en.wikipedia.org/wiki/Euclidean_algorithm

    The natural numbers m and n must be coprime, since any common factor could be factored out of m and n to make g greater. Thus, any other number c that divides both a and b must also divide g. The greatest common divisor g of a and b is the unique (positive) common divisor of a and b that is divisible by any other common divisor c. [6]

  4. Xcas - Wikipedia

    en.wikipedia.org/wiki/Xcas

    Figure 1. Xcas calculates fractions without common denominator. Figure 2. Xcas can solve equation, calculate derivative, antiderivative and more. Figure 3. Xcas can solve differential equations. Xcas is a user interface to Giac, which is an open source [2] computer algebra system (CAS) for Windows, macOS and Linux among many other platforms.

  5. Irreducible fraction - Wikipedia

    en.wikipedia.org/wiki/Irreducible_fraction

    The final result, ⁠ 4 / 3 ⁠, is an irreducible fraction because 4 and 3 have no common factors other than 1. The original fraction could have also been reduced in a single step by using the greatest common divisor of 90 and 120, which is 30. As 120 ÷ 30 = 4, and 90 ÷ 30 = 3, one gets = Which method is faster "by hand" depends on the ...

  6. Polynomial greatest common divisor - Wikipedia

    en.wikipedia.org/wiki/Polynomial_greatest_common...

    Then, take the product of all common factors. At this stage, we do not necessarily have a monic polynomial, so finally multiply this by a constant to make it a monic polynomial. This will be the GCD of the two polynomials as it includes all common divisors and is monic. Example one: Find the GCD of x 2 + 7x + 6 and x 2 − 5x − 6.

  7. Shor's algorithm - Wikipedia

    en.wikipedia.org/wiki/Shor's_algorithm

    The problem that we are trying to solve is: given an odd composite number, find its integer factors. To achieve this, Shor's algorithm consists of two parts: A classical reduction of the factoring problem to the problem of order-finding.

  8. Cross-multiplication - Wikipedia

    en.wikipedia.org/wiki/Cross-multiplication

    This is a common procedure in mathematics, used to reduce fractions or calculate a value for a given variable in a fraction. If we have an equation =, where x is a variable we are interested in solving for, we can use cross-multiplication to determine that =.

  9. Factorization - Wikipedia

    en.wikipedia.org/wiki/Factorization

    The polynomial x 2 + cx + d, where a + b = c and ab = d, can be factorized into (x + a)(x + b).. In mathematics, factorization (or factorisation, see English spelling differences) or factoring consists of writing a number or another mathematical object as a product of several factors, usually smaller or simpler objects of the same kind.