enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Glycolysis - Wikipedia

    en.wikipedia.org/wiki/Glycolysis

    Glycolysis is the metabolic pathway that converts glucose (C 6 H 12 O 6) into pyruvate and, in most organisms, occurs in the liquid part of cells (the cytosol). The free energy released in this process is used to form the high-energy molecules adenosine triphosphate (ATP) and reduced nicotinamide adenine dinucleotide (NADH). [1]

  3. Phosphorylation - Wikipedia

    en.wikipedia.org/wiki/Phosphorylation

    Glycolysis is an essential process of glucose degrading into two molecules of pyruvate, through various steps, with the help of different enzymes. It occurs in ten steps and proves that phosphorylation is a much required and necessary step to attain the end products.

  4. Cellular respiration - Wikipedia

    en.wikipedia.org/wiki/Cellular_respiration

    Phosphorylation of glucose and fructose 6-phosphate uses two ATP from the cytoplasm. Glycolysis pay-off phase 4 Substrate-level phosphorylation 2 NADH 3 or 5 Oxidative phosphorylation: Each NADH produces net 1.5 ATP (instead of usual 2.5) due to NADH transport over the mitochondrial membrane Oxidative decarboxylation of pyruvate 2 NADH 5

  5. Bioenergetic systems - Wikipedia

    en.wikipedia.org/wiki/Bioenergetic_systems

    Aerobic glycolysis Glycolysis – The first stage is known as glycolysis, which produces 2 ATP molecules, 2 reduced molecules of nicotinamide adenine dinucleotide and 2 pyruvate molecules that move on to the next stage – the Krebs cycle. Glycolysis takes place in the cytoplasm of normal body cells, or the sarcoplasm of muscle cells.

  6. Carbohydrate metabolism - Wikipedia

    en.wikipedia.org/wiki/Carbohydrate_metabolism

    In the liver, muscles, and the kidney, this process occurs to provide glucose when necessary. [12] A single glucose molecule is cleaved from a branch of glycogen, and is transformed into glucose-1-phosphate during this process. [1] This molecule can then be converted to glucose-6-phosphate, an intermediate in the glycolysis pathway. [1]

  7. Pentose phosphate pathway - Wikipedia

    en.wikipedia.org/wiki/Pentose_phosphate_pathway

    The pentose phosphate pathway (also called the phosphogluconate pathway and the hexose monophosphate shunt or HMP shunt) is a metabolic pathway parallel to glycolysis. [1] It generates NADPH and pentoses (five-carbon sugars) as well as ribose 5-phosphate, a precursor for the synthesis of nucleotides. [1]

  8. Glucose 6-phosphate - Wikipedia

    en.wikipedia.org/wiki/Glucose_6-phosphate

    This reaction converts glucose 6-phosphate to fructose 6-phosphate in preparation for phosphorylation to fructose 1,6-bisphosphate. [2] The addition of the second phosphoryl group to produce fructose 1,6-bisphosphate is an irreversible step, and so is used to irreversibly target the glucose 6-phosphate breakdown to provide energy for ATP ...

  9. Carbohydrate catabolism - Wikipedia

    en.wikipedia.org/wiki/Carbohydrate_catabolism

    Oxidative phosphorylation contributes the majority of the ATP produced, compared to glycolysis and the Krebs cycle. While the ATP count is glycolysis and the Krebs cycle is two ATP molecules, the electron transport chain contributes, at most, twenty-eight ATP molecules. A contributing factor is due to the energy potentials of NADH and FADH 2.