Search results
Results from the WOW.Com Content Network
The notion of weighted mean plays a role in descriptive statistics and also occurs in a more general form in several other areas of mathematics. If all the weights are equal, then the weighted mean is the same as the arithmetic mean .
The result of this application of a weight function is a weighted sum or weighted average. Weight functions occur frequently in statistics and analysis , and are closely related to the concept of a measure .
This is because, in measure theory, the value of the Lebesgue integral of X is defined via weighted averages of approximations of X which take on finitely many values. [19] Moreover, if given a random variable with finitely or countably many possible values, the Lebesgue theory of expectation is identical to the summation formulas given above.
Download as PDF; Printable version; ... move to sidebar hide. In statistics, there are many applications of ... Weighted mean;
It is a measure used to evaluate the performance of regression or forecasting models. It is a variant of MAPE in which the mean absolute percent errors is treated as a weighted arithmetic mean. Most commonly the absolute percent errors are weighted by the actuals (e.g. in case of sales forecasting, errors are weighted by sales volume). [3]
The weighted harmonic mean is the preferable method for averaging multiples, such as the price–earnings ratio (P/E). If these ratios are averaged using a weighted arithmetic mean, high data points are given greater weights than low data points. The weighted harmonic mean, on the other hand, correctly weights each data point. [14]
In statistics, Gower's distance between two mixed-type objects is a similarity measure that can handle different types of data within the same dataset and is particularly useful in cluster analysis or other multivariate statistical techniques. Data can be binary, ordinal, or continuous variables.
The idea of the kernel average smoother is the following. For each data point X 0 , choose a constant distance size λ (kernel radius, or window width for p = 1 dimension), and compute a weighted average for all data points that are closer than λ {\displaystyle \lambda } to X 0 (the closer to X 0 points get higher weights).