enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Markov chain - Wikipedia

    en.wikipedia.org/wiki/Markov_chain

    If the Markov chain is time-homogeneous, then the transition matrix P is the same after each step, so the k-step transition probability can be computed as the k-th power of the transition matrix, P k. If the Markov chain is irreducible and aperiodic, then there is a unique stationary distribution π. [41]

  3. Coupling from the past - Wikipedia

    en.wikipedia.org/wiki/Coupling_from_the_past

    Consider a finite state irreducible aperiodic Markov chain with state space and (unique) stationary distribution (is a probability vector). Suppose that we come up with a probability distribution on the set of maps : with the property that for every fixed , its image () is distributed according to the transition probability of from state .

  4. Kolmogorov's criterion - Wikipedia

    en.wikipedia.org/wiki/Kolmogorov's_criterion

    Consider this figure depicting a section of a Markov chain with states i, j, k and l and the corresponding transition probabilities. Here Kolmogorov's criterion implies that the product of probabilities when traversing through any closed loop must be equal, so the product around the loop i to j to l to k returning to i must be equal to the loop the other way round,

  5. Discrete phase-type distribution - Wikipedia

    en.wikipedia.org/wiki/Discrete_phase-type...

    A terminating Markov chain is a Markov chain where all states are transient, except one which is absorbing. Reordering the states, the transition probability matrix of a terminating Markov chain with m {\displaystyle m} transient states is

  6. Markov chain mixing time - Wikipedia

    en.wikipedia.org/wiki/Markov_chain_mixing_time

    In probability theory, the mixing time of a Markov chain is the time until the Markov chain is "close" to its steady state distribution.. More precisely, a fundamental result about Markov chains is that a finite state irreducible aperiodic chain has a unique stationary distribution π and, regardless of the initial state, the time-t distribution of the chain converges to π as t tends to infinity.

  7. Markov chains on a measurable state space - Wikipedia

    en.wikipedia.org/wiki/Markov_chains_on_a...

    In 1953 the term Markov chain was used for stochastic processes with discrete or continuous index set, living on a countable or finite state space, see Doob. [1] or Chung. [2] Since the late 20th century it became more popular to consider a Markov chain as a stochastic process with discrete index set, living on a measurable state space. [3] [4] [5]

  8. Play Just Words Online for Free - AOL.com

    www.aol.com/games/play/masque-publishing/just-words

    Just Words. If you love Scrabble, you'll love the wonderful word game fun of Just Words. Play Just Words free online! By Masque Publishing

  9. Markov model - Wikipedia

    en.wikipedia.org/wiki/Markov_model

    A Tolerant Markov model (TMM) is a probabilistic-algorithmic Markov chain model. [6] It assigns the probabilities according to a conditioning context that considers the last symbol, from the sequence to occur, as the most probable instead of the true occurring symbol.