Search results
Results from the WOW.Com Content Network
The reversal algorithm is the simplest to explain, using rotations. A rotation is an in-place reversal of array elements. This method swaps two elements of an array from outside in within a range. The rotation works for an even or odd number of array elements. The reversal algorithm uses three in-place rotations to accomplish an in-place block ...
As another example, many sorting algorithms rearrange arrays into sorted order in-place, including: bubble sort, comb sort, selection sort, insertion sort, heapsort, and Shell sort. These algorithms require only a few pointers, so their space complexity is O(log n). [1] Quicksort operates in-place on the data
Because the bit-reversal permutation is an involution, it may be performed easily in place (without copying the data into another array) by swapping pairs of elements. In the random-access machine commonly used in algorithm analysis, a simple algorithm that scans the indexes in input order and swaps whenever the scan encounters an index whose ...
That is, given a preinitialized array, it shuffles the elements of the array in place, rather than producing a shuffled copy of the array. This can be an advantage if the array to be shuffled is large. To simultaneously initialize and shuffle an array, a bit more efficiency can be attained by doing an "inside-out" version of the shuffle.
The following Python implementation [1] [circular reference] performs cycle sort on an array, counting the number of writes to that array that were needed to sort it. Python def cycle_sort ( array ) -> int : """Sort an array in place and return the number of writes.""" writes = 0 # Loop through the array to find cycles to rotate.
OFFT - recursive block in-place transpose of square matrices, in Fortran; Jason Stratos Papadopoulos, blocked in-place transpose of square matrices, in C, sci.math.num-analysis newsgroup (April 7, 1998). See "Source code" links in the references section above, for additional code to perform in-place transposes of both square and non-square ...
Swap the first element of the array (the largest element in the heap) with the final element of the heap. Decrease the considered range of the heap by one. Call the siftDown() function on the array to move the new first element to its correct place in the heap. Go back to step (2) until the remaining array is a single element.
In linear algebra, a rotation matrix is a transformation matrix that is used to perform a rotation in Euclidean space.For example, using the convention below, the matrix = [ ]