Search results
Results from the WOW.Com Content Network
For low viscosity liquids (such as water) flowing out of a round hole in a tank, the discharge coefficient is in the order of 0.65. [4] By discharging through a round tube or hose, the coefficient of discharge can be increased to over 0.9. For rectangular openings, the discharge coefficient can be up to 0.67, depending on the height-width ratio.
In a nozzle or other constriction, the discharge coefficient (also known as coefficient of discharge or efflux coefficient) is the ratio of the actual discharge to the ideal discharge, [1] i.e., the ratio of the mass flow rate at the discharge end of the nozzle to that of an ideal nozzle which expands an identical working fluid from the same initial conditions to the same exit pressures.
Darcy's law is an equation that describes the flow of a fluid through a porous medium and through a Hele-Shaw cell.The law was formulated by Henry Darcy based on results of experiments [1] on the flow of water through beds of sand, forming the basis of hydrogeology, a branch of earth sciences.
The fundamental difference between the orifice meter and the turbine meter is the flow equation derivation. The orifice meter flow calculation is based on fluid flow fundamentals (a 1st Law of Thermodynamics derivation utilizing the pipe diameter and vena contracta diameters for the continuity equation). Deviations from theoretical expectation ...
The Cambridge Handbook of Physics Formulas. Cambridge University Press. ... Physics for Scientists and Engineers: With Modern Physics (6th ed.).
The choked velocity is a function of the upstream pressure but not the downstream. Although the velocity is constant, the mass flow rate is dependent on the density of the upstream gas, which is a function of the upstream pressure. Flow velocity reaches the speed of sound in the orifice, and it may be termed a sonic orifice.
The coefficient of contraction is defined as the ratio between the area of the jet at the vena contracta and the area of the orifice. C c = Area at vena contracta/Area of orifice. The typical value may be taken as 0.611 for a sharp orifice (concentric with the flow channel). [2] [3] The smaller the value, the greater the effect the vena ...
Eq.2b is a fundamental equation for most of discrete models. The equation can be solved by recurrence and iteration method for a manifold. It is clear that Eq.2a is limiting case of Eq.2b when ∆X → 0. Eq.2a is simplified to Eq.1 Bernoulli equation without the potential energy term when β=1 whilst Eq.2 is simplified to Kee's model [6] when β=0