enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Electrostatics - Wikipedia

    en.wikipedia.org/wiki/Electrostatics

    Therefore, the electrostatic field everywhere inside a conductive object is zero, and the electrostatic potential is constant. The electric field, E {\displaystyle \mathbf {E} } , in units of Newtons per Coulomb or volts per meter, is a vector field that can be defined everywhere, except at the location of point charges (where it diverges to ...

  3. Electromagnetism - Wikipedia

    en.wikipedia.org/wiki/Electromagnetism

    The electromagnetic force is responsible for many of the chemical and physical phenomena observed in daily life. The electrostatic attraction between atomic nuclei and their electrons holds atoms together. Electric forces also allow different atoms to combine into molecules, including the macromolecules such as proteins that form the basis of life.

  4. Coulomb's law - Wikipedia

    en.wikipedia.org/wiki/Coulomb's_law

    Also, gravitational forces are much weaker than electrostatic forces. [2] Coulomb's law can be used to derive Gauss's law , and vice versa. In the case of a single point charge at rest, the two laws are equivalent, expressing the same physical law in different ways. [ 6 ]

  5. Static electricity - Wikipedia

    en.wikipedia.org/wiki/Static_electricity

    Electrostatic discharge while fueling with gasoline is a present danger at gas stations. [20] Fires have also been started at airports while refueling aircraft with kerosene. New grounding technologies, the use of conducting materials, and the addition of anti-static additives help to prevent or safely dissipate the buildup of static electricity.

  6. Fundamental interaction - Wikipedia

    en.wikipedia.org/wiki/Fundamental_interaction

    The gravitational and electromagnetic interactions produce long-range forces whose effects can be seen directly in everyday life. The strong and weak interactions produce forces at subatomic scales and govern nuclear interactions inside atoms. Some scientists hypothesize that a fifth force might exist, but these hypotheses remain speculative.

  7. Electricity - Wikipedia

    en.wikipedia.org/wiki/Electricity

    In the 19th and early 20th century, electricity was not part of the everyday life of many people, even in the industrialised Western world. The popular culture of the time accordingly often depicted it as a mysterious, quasi-magical force that can slay the living, revive the dead or otherwise bend the laws of nature.

  8. Triboelectric effect - Wikipedia

    en.wikipedia.org/wiki/Triboelectric_effect

    An important step was around 1663 when Otto von Guericke invented [20] a machine that could automate triboelectric charge generation, making it much easier to produce more tribocharge; other electrostatic generators followed. [16] For instance, shown in the Figure is an electrostatic generator built by Francis Hauksbee the Younger.

  9. Electrostatic induction - Wikipedia

    en.wikipedia.org/wiki/Electrostatic_induction

    Therefore electrostatic induction ensures that the electric field everywhere inside a conductive object is zero. A remaining question is how large the induced charges are. The movement of charges is caused by the force exerted on them by the electric field of the external charged object, by Coulomb's law .