enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Pie chart - Wikipedia

    en.wikipedia.org/wiki/Pie_chart

    A pie chart (or a circle chart) is a circular statistical graphic which is divided into slices to illustrate numerical proportion. In a pie chart, the arc length of each slice (and consequently its central angle and area ) is proportional to the quantity it represents.

  3. Graph center - Wikipedia

    en.wikipedia.org/wiki/Graph_center

    The center (or Jordan center [1]) of a graph is the set of all vertices of minimum eccentricity, [2] that is, the set of all vertices u where the greatest distance d(u,v) to other vertices v is minimal. Equivalently, it is the set of vertices with eccentricity equal to the graph's radius. [3]

  4. Unit circle - Wikipedia

    en.wikipedia.org/wiki/Unit_circle

    Because PQ has length y 1, OQ length x 1, and OP has length 1 as a radius on the unit circle, sin(t) = y 1 and cos(t) = x 1. Having established these equivalences, take another radius OR from the origin to a point R(−x 1,y 1) on the circle such that the same angle t is formed with the negative arm of the x-axis.

  5. Circle - Wikipedia

    en.wikipedia.org/wiki/Circle

    It is a special case of a chord, namely the longest chord for a given circle, and its length is twice the length of a radius. Disc: the region of the plane bounded by a circle. In strict mathematical usage, a circle is only the boundary of the disc (or disk), while in everyday use the term "circle" may also refer to a disc.

  6. Degree of curvature - Wikipedia

    en.wikipedia.org/wiki/Degree_of_curvature

    Where degree of curvature is based on 100 units of arc length, the conversion between degree of curvature and radius is Dr = 18000/π ≈ 5729.57795, where D is degree and r is radius. Since rail routes have very large radii, they are laid out in chords, as the difference to the arc is inconsequential; this made work easier before electronic ...

  7. Gauss circle problem - Wikipedia

    en.wikipedia.org/wiki/Gauss_circle_problem

    Gauss's circle problem asks how many points there are inside this circle of the form (,) where and are both integers. Since the equation of this circle is given in Cartesian coordinates by x 2 + y 2 = r 2 {\displaystyle x^{2}+y^{2}=r^{2}} , the question is equivalently asking how many pairs of integers m and n there are such that

  8. Circumference - Wikipedia

    en.wikipedia.org/wiki/Circumference

    In geometry, the circumference (from Latin circumferens, meaning "carrying around") is the perimeter of a circle or ellipse. The circumference is the arc length of the circle, as if it were opened up and straightened out to a line segment. [1] More generally, the perimeter is the curve length around any closed figure.

  9. Circle graph - Wikipedia

    en.wikipedia.org/wiki/Circle_graph

    A circle with five chords and the corresponding circle graph. In graph theory, a circle graph is the intersection graph of a chord diagram.That is, it is an undirected graph whose vertices can be associated with a finite system of chords of a circle such that two vertices are adjacent if and only if the corresponding chords cross each other.