Search results
Results from the WOW.Com Content Network
(Medial view shows sagittal section through left thalamus.) The principal subdivision of the thalamus into nucleus groups is the trisection of each thalamus (left and right) by a Y-shaped internal medullary lamina. This trisection divides each thalamus into anterior, medial and lateral groups of nuclei. [8]
The hypothalamus produces the hormones oxytocin and vasopressin in its endocrine cells (left). These are released at nerve endings in the posterior pituitary gland and then secreted into the systemic circulation. The hypothalamus releases tropic hormones into the hypophyseal portal system to the anterior pituitary (right).
They are connected to other parts of the brain (as shown in the schematic, below left), and act as a relay for impulses coming from the amygdalae and hippocampi, via the mamillothalamic tract to the thalamus. The lateral mammillary nucleus has bidirectional connections with the dorsal tegmental nucleus. The medial mammillary nucleus connects ...
However, although the hypothalamus projects to both the mammillary bodies and the anterior nuclei of the thalamus, the anterior nuclei receive input from hippocampal cells deep to the pyramidal cells projecting to the mammillary bodies. [2] These nuclei are considered to be association nuclei, one of the three broader subdivisions of thalamic ...
Schematic of the HPA axis (CRH, corticotropin-releasing hormone; ACTH, adrenocorticotropic hormone) Hypothalamus, pituitary gland, and adrenal cortex The hypothalamic–pituitary–adrenal axis (HPA axis or HTPA axis) is a complex set of direct influences and feedback interactions among three components: the hypothalamus (a part of the brain located below the thalamus), the pituitary gland (a ...
The thyroid secretes thyroxine, the pituitary secretes growth hormone, the pineal secretes melatonin, the testis secretes testosterone, and the ovaries secrete estrogen and progesterone. [2] Glands that signal each other in sequence are often referred to as an axis, such as the hypothalamic–pituitary–adrenal axis.
These hypophysiotropic hormones are stimulated by parvocellular neurosecretory cells located in the periventricular area of the hypothalamus. After their release into the capillaries of the third ventricle, the hypophysiotropic hormones travel through what is known as the hypothalamo-pituitary portal circulation.
Vasopressin (antidiuretic hormone, ADH) is released in response to solute concentration in the blood, decreased blood volume, or blood pressure. [citation needed]Some other inputs come from the brainstem, including from some of the noradrenergic neurons of the nucleus of the solitary tract and the ventrolateral medulla.