Search results
Results from the WOW.Com Content Network
If A is a set, then the absolute complement of A (or simply the complement of A) is the set of elements not in A (within a larger set that is implicitly defined). In other words, let U be a set that contains all the elements under study; if there is no need to mention U, either because it has been previously specified, or it is obvious and unique, then the absolute complement of A is the ...
A Venn diagram is a widely used diagram style that shows the logical relation between sets, popularized by John Venn (1834–1923) in the 1880s. The diagrams are used to teach elementary set theory, and to illustrate simple set relationships in probability, logic, statistics, linguistics and computer science.
Universe set and complement notation The notation L ∁ = def X ∖ L . {\displaystyle L^{\complement }~{\stackrel {\scriptscriptstyle {\text{def}}}{=}}~X\setminus L.} may be used if L {\displaystyle L} is a subset of some set X {\displaystyle X} that is understood (say from context, or because it is clearly stated what the superset X ...
For example, {1, 2} is a subset of {1, 2, 3}, and so is {2} but {1, 4} is not. As implied by this definition, a set is a subset of itself. For cases where this possibility is unsuitable or would make sense to be rejected, the term proper subset is defined. A is called a proper subset of B if and only if A is a subset of B, but A is not equal to B.
The complement of a set A is then given by that portion of the rectangle outside of A's circle. Strictly speaking, this is the relative complement U \ A of A relative to U; but in a context where U is the universe, it can be regarded as the absolute complement A C of A. Similarly, there is a notion of the nullary intersection, that is the ...
The algebra of sets is the set-theoretic analogue of the algebra of numbers. Just as arithmetic addition and multiplication are associative and commutative, so are set union and intersection; just as the arithmetic relation "less than or equal" is reflexive, antisymmetric and transitive, so is the set relation of "subset".
Another example of events being collectively exhaustive and mutually exclusive at same time are, event "even" (2,4 or 6) and event "odd" (1,3 or 5) in a random experiment of rolling a six-sided die. These both events are mutually exclusive because even and odd outcome can never occur at same time.
The complement of an event A is usually denoted as A′, A c, A or A. Given an event, the event and its complementary event define a Bernoulli trial : did the event occur or not? For example, if a typical coin is tossed and one assumes that it cannot land on its edge, then it can either land showing "heads" or "tails."