Search results
Results from the WOW.Com Content Network
One particular solution is x = 0, y = 0, z = 0. Two other solutions are x = 3, y = 6, z = 1, and x = 8, y = 9, z = 2. There is a unique plane in three-dimensional space which passes through the three points with these coordinates, and this plane is the set of all points whose coordinates are solutions of the equation.
The solution set for the equations x − y = −1 and 3x + y = 9 is the single point (2, 3). A solution of a linear system is an assignment of values to the variables ,, …, such that each of the equations is satisfied. The set of all possible solutions is called the solution set. [5]
Vertical line of equation x = a Horizontal line of equation y = b. Each solution (x, y) of a linear equation + + = may be viewed as the Cartesian coordinates of a point in the Euclidean plane. With this interpretation, all solutions of the equation form a line, provided that a and b are not both zero. Conversely, every line is the set of all ...
"x^y = y^x - commuting powers". Arithmetical and Analytical Puzzles. Torsten Sillke. Archived from the original on 2015-12-28. dborkovitz (2012-01-29). "Parametric Graph of x^y=y^x". GeoGebra. OEIS sequence A073084 (Decimal expansion of −x, where x is the negative solution to the equation 2^x = x^2)
For example, taking the statement x + 1 = 0, if x is substituted with 1, this implies 1 + 1 = 2 = 0, which is false, which implies that if x + 1 = 0 then x cannot be 1. If x and y are integers, rationals, or real numbers, then xy = 0 implies x = 0 or y = 0. Consider abc = 0. Then, substituting a for x and bc for y, we learn a = 0 or bc = 0.
The solutions –1 and 2 of the polynomial equation x 2 – x + 2 = 0 are the points where the graph of the quadratic function y = x 2 – x + 2 cuts the x-axis. In general, an algebraic equation or polynomial equation is an equation of the form
This equation is an equation only of y'' and y', meaning it is reducible to the general form described above and is, therefore, separable. Since it is a second-order separable equation, collect all x variables on one side and all y' variables on the other to get: (′) (′) =.
Let y (n) (x) be the nth derivative of the unknown function y(x).Then a Cauchy–Euler equation of order n has the form () + () + + =. The substitution = (that is, = (); for <, in which one might replace all instances of by | |, extending the solution's domain to {}) can be used to reduce this equation to a linear differential equation with constant coefficients.