Search results
Results from the WOW.Com Content Network
A variant of Gaussian elimination called Gauss–Jordan elimination can be used for finding the inverse of a matrix, if it exists. If A is an n × n square matrix, then one can use row reduction to compute its inverse matrix, if it exists. First, the n × n identity matrix is augmented to the right of A, forming an n × 2n block matrix [A | I].
Thus the name Gaussian elimination is only a convenient abbreviation of a complex history. Banachiewicz [ 1 ] was the first to consider elimination in terms of matrices and in this way formulated LU decomposition, as demonstrated by his graphic illustration.
Kron reduction is a useful tool to eliminate unused nodes in a Y-parameter matrix. [2] [3] For example, three linear elements linked in series with a port at each end may be easily modeled as a 4X4 nodal admittance matrix of Y-parameters, but only the two port nodes normally need to be considered for modeling and simulation.
The reduced row echelon form of a matrix is unique and does not depend on the sequence of elementary row operations used to obtain it. The variant of Gaussian elimination that transforms a matrix to reduced row echelon form is sometimes called Gauss–Jordan elimination. A matrix is in column echelon form if its transpose is in row echelon form.
The Laplace expansion is often useful in proofs, as in, for example, allowing recursion on the size of matrices. It is also of didactic interest for its simplicity and as one of several ways to view and compute the determinant. For large matrices, it quickly becomes inefficient to compute when compared to Gaussian elimination.
The Schur complement arises when performing a block Gaussian elimination on the matrix M.In order to eliminate the elements below the block diagonal, one multiplies the matrix M by a block lower triangular matrix on the right as follows: = [] [] [] = [], where I p denotes a p×p identity matrix.
The search engine that helps you find exactly what you're looking for. Find the most relevant information, video, images, and answers from all across the Web.
These decompositions summarize the process of Gaussian elimination in matrix form. Matrix P represents any row interchanges carried out in the process of Gaussian elimination. If Gaussian elimination produces the row echelon form without requiring any row interchanges, then P = I, so an LU decomposition exists.