enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gaussian elimination - Wikipedia

    en.wikipedia.org/wiki/Gaussian_elimination

    A variant of Gaussian elimination called Gauss–Jordan elimination can be used for finding the inverse of a matrix, if it exists. If A is an n × n square matrix, then one can use row reduction to compute its inverse matrix, if it exists. First, the n × n identity matrix is augmented to the right of A, forming an n × 2n block matrix [A | I].

  3. LU decomposition - Wikipedia

    en.wikipedia.org/wiki/LU_decomposition

    Thus the name Gaussian elimination is only a convenient abbreviation of a complex history. Banachiewicz [ 1 ] was the first to consider elimination in terms of matrices and in this way formulated LU decomposition, as demonstrated by his graphic illustration.

  4. Gaussian integer - Wikipedia

    en.wikipedia.org/wiki/Gaussian_integer

    The Gaussian integers are the set [1] [] = {+,}, =In other words, a Gaussian integer is a complex number such that its real and imaginary parts are both integers.Since the Gaussian integers are closed under addition and multiplication, they form a commutative ring, which is a subring of the field of complex numbers.

  5. Schur complement - Wikipedia

    en.wikipedia.org/wiki/Schur_complement

    The Schur complement arises when performing a block Gaussian elimination on the matrix M.In order to eliminate the elements below the block diagonal, one multiplies the matrix M by a block lower triangular matrix on the right as follows: = [] [] [] = [], where I p denotes a p×p identity matrix.

  6. Matrix decomposition - Wikipedia

    en.wikipedia.org/wiki/Matrix_decomposition

    These decompositions summarize the process of Gaussian elimination in matrix form. Matrix P represents any row interchanges carried out in the process of Gaussian elimination. If Gaussian elimination produces the row echelon form without requiring any row interchanges, then P = I, so an LU decomposition exists.

  7. Division ring - Wikipedia

    en.wikipedia.org/wiki/Division_ring

    The Gaussian elimination algorithm remains applicable. The column rank of a matrix is the dimension of the right module generated by the columns, and the row rank is the dimension of the left module generated by the rows; the same proof as for the vector space case can be used to show that these ranks are the same and define the rank of a matrix.

  8. List of algorithms - Wikipedia

    en.wikipedia.org/wiki/List_of_algorithms

    Gauss–Legendre algorithm: computes the digits of pi; Chudnovsky algorithm: a fast method for calculating the digits of π; Bailey–Borwein–Plouffe formula: (BBP formula) a spigot algorithm for the computation of the nth binary digit of π; Division algorithms: for computing quotient and/or remainder of two numbers Long division; Restoring ...

  9. The Nine Chapters on the Mathematical Art - Wikipedia

    en.wikipedia.org/wiki/The_Nine_Chapters_on_the...

    The solution method called "Fang Cheng Shi" is best known today as Gaussian elimination. Among the eighteen problems listed in the Fang Cheng chapter, some are equivalent to simultaneous linear equations with two unknowns, some are equivalent to simultaneous linear equations with 3 unknowns, and the most complex example analyzes the solution to ...